CS 341: ALGORITHMS
Trevor Brown

trevor.brown@uwaterloo.ca

DC 2338, Office hour M3-4pm
THIS TIME

- Announcement: course evaluations
- Intractability (hardness of problems)
 - Complexity class NP
 - Polynomial transformations
Algorithm Solving a Decision Problem: An algorithm A is said to solve a decision problem Π provided that A finds the correct answer ("yes" or "no") for every instance I of Π in finite time.

Polynomial-time Algorithm: An algorithm A for a decision problem Π is said to be a polynomial-time algorithm provided that the complexity of A is $O(n^k)$, where k is a positive integer and $n = \text{Size}(I)$.

The Complexity Class \mathbf{P} denotes the set of all decision problems that have polynomial-time algorithms solving them. We write $\Pi \in \mathbf{P}$ if the decision problem Π is in the complexity class \mathbf{P}.
Travelling Salesperson Problems

<table>
<thead>
<tr>
<th>Problem 7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP-Optimization</td>
</tr>
<tr>
<td>Instance: A graph G and edge weights $w : E \to \mathbb{Z}^+$.</td>
</tr>
<tr>
<td>Find: A hamiltonian cycle H in G such that $w(H) = \sum_{e \in H} w(e)$ is minimized.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem 7.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP-Optimal Value</td>
</tr>
<tr>
<td>Instance: A graph G and edge weights $w : E \to \mathbb{Z}^+$.</td>
</tr>
<tr>
<td>Find: The minimum T such that there exists a hamiltonian cycle H in G with $w(H) = T$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem 7.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP-Decision</td>
</tr>
<tr>
<td>Instance: A graph G, edge weights $w : E \to \mathbb{Z}^+$, and a target T.</td>
</tr>
<tr>
<td>Question: Does there exist a hamiltonian cycle H in G with $w(H) \leq T$?</td>
</tr>
</tbody>
</table>

Last time we saw all three of these are **equivalent** (modulo polynomial factors). If one can be solved in poly-time then all can.
COMPLEXITY CLASS \textbf{NP}

NP: Non-deterministic polynomial time
Suppose I give you a certificate consisting of an array of numbers, and claim it represents such a subset. Of course, I might lie and give you a subset that does not sum to zero…

If I’m telling the truth, then we call this a yes-certificate. It is essentially a proof that “yes” is the correct output.

Can you use a yes-certificate to solve the problem efficiently?

Can you efficiently determine whether I am lying?

Finding such a subset can be extremely difficult.

Can you use a yes-certificate to solve the problem efficiently?

Of course, I might lie and give you a subset that does not sum to zero…

I could even give you numbers that are not in the input…

EXAMPLE: SUBSET-SUM PROBLEM

• Suppose we are given some integers, -7, -3, -2, 5, 8

• Does some subset of these sum to zero?
 • In this case, yes: (-3) + (-2) + 5 = 0
Certificates

Certificate: Informally, a certificate for a yes-instance \(I \) is some “extra information” \(C \) which makes it easy to verify that \(I \) is a yes-instance.

Certificate Verification Algorithm: Suppose that \(Ver \) is an algorithm that verifies certificates for yes-instances. Then \(Ver(I, C) \) outputs “yes” if \(I \) is a yes-instance and \(C \) is a valid certificate for \(I \). If \(Ver(I, C) \) outputs “no”, then either \(I \) is a no-instance, or \(I \) is a yes-instance and \(C \) is an invalid certificate.

Polynomial-time Certificate Verification Algorithm: A certificate verification algorithm \(Ver \) is a polynomial-time certificate verification algorithm if the complexity of \(Ver \) is \(O(n^k) \), where \(k \) is a positive integer and \(n = \text{Size}(I) \).

For example, for subset-sum, a correct \(Ver(I, C) \) should return “yes” only if \(C \subseteq I \) and \(\text{sum}(C) = 0 \)

It can be hard to define a certificate for a no-instance... E.g., how to create a certificate that proves no subset sums to 0?
SUBSET-SUM: ALGORITHM VIA VERIFYING CERTIFICATES

1. `SubsetSum(X[1..n])`
2. for every possible subset S of X
3. if `sumsToZero(S)` then return true
4. return false

If any certificate S sums to zero, it is a **yes-certificate** (a proof that the answer to the decision problem is “true”), and we return true.

Generating all certificates is expensive; exponential time!

But **verifying one** certificate is fast; runtime is $O(|S|)$

This is polynomial in the input size

A certificate that does **not** sum to zero doesn’t really prove anything (would need to know that all certificates sum to non-zero)

What does this brute force solution have to do with **NP**?

Type of a certificate:
- set of integers

Generate every subset certificate S

Verify certificate S
- (valid + sums to zero)
Given such an oracle, this algorithm would **solve** subset-sum in poly-time

```plaintext
SubsetSumWithOracle(I)
  C = Oracle(I)
  return verify(I, C)
```

```plaintext
verify(I, C)
  if C not subset of I then return false
  return (sum(C) == 0)
```

Suppose instead of generating every possible subset, there exists a poly-time **non-deterministic oracle** which magically returns a **subset that sums to 0** if one exists and otherwise returns **any set of integers**.

Non-deterministic is the N in NP: “Non-deterministic polynomial time”

The “non-deterministic” part of the oracle is how it “magically returns” a yes-certificate if one exists.

Otherwise, either C is not a subset of the input (return false), or C sums to a non-zero value (return false).
GENERALIZING BEYOND SUBSET-SUM

- You can solve **any decision problem** in non-deterministic poly-time if you have:
 1. a poly-time non-deterministic **oracle**, and
 2. a poly-time **verify** algorithm
- Such that:
 - If I is a **yes**-instance, then the oracle returns a **yes**-certificate C (i.e., a “proof” the answer is “yes”) and $verify(I, C)$ returns **true**
 - If I is a **no**-instance, then $verify(I, C)$ returns **false** for all C (i.e., it must be impossible to fool $verify$ into returning **true**)
- The algorithm:
  ```
  1. SolveAnyProblemWithOracle(I)
  2. C = Oracle(I)
  3. return verify(I, C)
  ```

Our definition of NP will **not** explicitly involve non-deterministic oracles. But it is based on **certificate verification**, which really only makes sense if you think of such oracles.

Could you “fool” the subset-sum verify function?
DEFINING NP

Intuition: For a yes-instance, there must exist some certificate that verify would accept (and, if one exists, the oracle would find it, solving the problem). For a no-instance, verify must always reject.

- A decision problem Π is **solved** by a poly-time verify alg. if:
 - for every **yes**-instance I, there exists a certificate C such that $\text{verify}(I, C)$ returns true, and
 - for every **no**-instance I, $\text{verify}(I, C)$ returns false for every C
 - The complexity class **NP** denotes the set of all decision problems that can be solved by poly-time verify algorithms
 - Note: it is **not** necessary to be able to implement an oracle for a problem to be in NP. We can simply **assume** an oracle exists, and show a poly-time verify algorithm exists.
Always keep the following in mind: finding a certificate can be much more difficult than verifying a given certificate.

As a rough analogy, finding a proof for a theorem can be much harder than verifying the correctness of someone else's proof.
MECHANICS OF SHOWING A PROBLEM IS IN NP

• **Recall:** A decision problem \(\Pi \) is **solved** by a poly-time **verify** alg. if:

 • for every **yes**-instance \(I \), **there exists** a certificate \(C \) such that \(\text{verify}(I, C) \) returns true, and

 • for every **no**-instance \(I \), \(\text{verify}(I, C) \) returns false for **every** \(C \)

• How to show \(\Pi \in NP \)

 1. Define a class of certificates (e.g., sets of integers)
 2. Design a poly-time \(\text{verify}(I, C) \) algorithm
 3. Prove it is correct (case 1): Let \(I \) be any yes-instance; Find \(C \) such that \(\text{verify}(I, C) = true \)
 4. Case 2: Let \(I \) be any no-instance, and \(C \) be any certificate; Show \(\text{verify}(I, C) = false \)
Let's show that this problem is in NP!

Have to find a poly-time verify algorithm...

Type of certificate? Array of nodes (which may or may not represent a Hamiltonian cycle)

How to verify that a given array of nodes represents a cycle?

How about a Hamiltonian cycle?

Problem 7.2

Hamiltonian Cycle

Instance: An undirected graph $G = (V, E)$.

Question: Does G contain a hamiltonian cycle?

A hamiltonian cycle is a cycle that passes through every vertex in V exactly once.
This is a verify algorithm that we imagine being called on the certificate X produced by $oracle(G)$.

If G is a no-instance of the problem, then every certificate should cause this procedure to return false.

If G is a yes-instance of the problem, then must show exists some certificate X for which this procedure returns true.

Easier to prove contrapositive: if we return true, then G is a yes-instance.

Yes-instance implies there is a Hamiltonian cycle. Suppose X is a sequence of n consecutive nodes on that cycle. Then we return true!

So, this problem is in NP.
HOW ARE P AND NP RELATED?

• $P \subseteq NP$
 • Consider a problem $\Pi \in P$
 • We show there exists a poly-time $verify(I, C)$ such that:
 • For every yes-instance I of Π, $verify(I, C) = true$ for some C
 • For every no-instance I of Π, $verify(I, C) = false$ for all C
 • By definition, there is a poly-time algorithm A to solve Π
 • Implement $verify(I, C)$ by simply running $A(I)$
 • Regardless of what C is, $verify(I, C)$ satisfies the above
• How about $NP \subseteq P$? Million dollar question. We think not.
POLYNOMIAL TRANSFORMATIONS

Formally defining poly-time reductions

Used for NP-completeness and impossibility results
POLYNOMIAL TRANSFORMATIONS

For a decision problem Π, let $\mathcal{I}(\Pi)$ denote the set of all instances of Π. Let $\mathcal{I}_{\text{yes}}(\Pi)$ and $\mathcal{I}_{\text{no}}(\Pi)$ denote the set of all yes-instances and no-instances (respectively) of Π.

Suppose that Π_1 and Π_2 are decision problems. We say that there is a polynomial transformation from Π_1 to Π_2 (denoted $\Pi_1 \leq_P \Pi_2$) if there exists a function $f : \mathcal{I}(\Pi_1) \rightarrow \mathcal{I}(\Pi_2)$ such that the following properties are satisfied:

- $f(I)$ is computable in polynomial time (as a function of $\text{size}(I)$, where $I \in \mathcal{I}(\Pi_1)$)
- if $I \in \mathcal{I}_{\text{yes}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\text{yes}}(\Pi_2)$
- if $I \in \mathcal{I}_{\text{no}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\text{no}}(\Pi_2)$

To argue there is a polynomial transformation, you must give $f(I)$, show it runs in poly-time, and show it satisfies these properties.

So, after transforming Π_1's input, you can run a solution to Π_2 and just return the result!
A polynomial transformation can be thought of as a (simple) special case of a polynomial-time Turing reduction, i.e., if $\Pi_1 \leq_P \Pi_2$, then $\Pi_1 \leq^T_P \Pi_2$.

Given a polynomial transformation f from Π_1 to Π_2, the corresponding Turing reduction is as follows:

Given $I \in \mathcal{I}(\Pi_1)$, construct $f(I) \in \mathcal{I}(\Pi_2)$.

Given an oracle for Π_2, say A, run $A(f(I))$.

We transform the instance, and then make a single call to the oracle.

Very important point: We do not know whether I is a yes-instance or a no-instance of Π_1 when we transform it to an instance $f(I)$ of Π_2.

To prove the implication “if $I \in \mathcal{I}_{\text{no}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\text{no}}(\Pi_2)$”, we usually prove the contrapositive statement “if $f(I) \in \mathcal{I}_{\text{yes}}(\Pi_2)$, then $I \in \mathcal{I}_{\text{yes}}(\Pi_1)$.”

This can help when it is hard to precisely characterize certificates for no-instances (or when such certificates don’t prove much).

Also known as Karp reductions and many-one reductions

We haven’t solved the problem yet, so we don’t know much about the input...

We saw one instance where a contrapositive was easier to prove when we discussed Hamiltonian cycles.
SUMMARIZING
THE MORE CONVENIENT DEFINITION

• Let Π_1 and Π_2 be decision problems
• $\Pi_1 \leq_P \Pi_2$ iff there exists $f : I(\Pi_1) \rightarrow I(\Pi_2)$ such that:
 • $f(I)$ is computable in poly-time, for all $I \in I(\Pi_1)$
 • If $I \in I_{yes}(\Pi_1)$ then $f(I) \in I_{yes}(\Pi_2)$
 • If $f(I) \in I_{yes}(\Pi_2)$ then $I \in I_{yes}(\Pi_1)$

This is the contrapositive. Was previously:
If $I \in I_{no}(\Pi_1)$ then $f(I) \in I_{no}(\Pi_2)$

Note: this is the same as saying
$(I \in I_{yes}(\Pi_1)) \iff (f(I) \in I_{yes}(\Pi_2))$
Example Polynomial Transformation

Problem 7.8

Clique

Instance: An undirected graph $G = (V, E)$ and an integer k, where $1 \leq k \leq |V|$.

Question: Does G contain a clique of size $\geq k$? (A **clique** is a subset of vertices $W \subseteq V$ such that $uv \in E$ for all $u, v \in W$, $u \neq v$.)

Problem 7.9

Vertex Cover

Instance: An undirected graph $G = (V, E)$ and an integer k, where $1 \leq k \leq |V|$.

Question: Does G contain a vertex cover of size $\leq k$? (A **vertex cover** is a subset of vertices $W \subseteq V$ such that $\{u, v\} \cap W \neq \emptyset$ for all edges $uv \in E$.)

Every edge must touch a **node** in W.

These k nodes touch **every edge** in G.

Actual reduction will be done **next time**.