CS 341: ALGORITHMS
Lecture 4: divide and conquer

Slides by Trevor Brown (some material from Doug Stinson’s slides)
trevor.brown@uwaterloo.ca
(http://tbrown.pro)
THIS TIME

• Divide and conquer paradigm
• Merge sort
• Recurrence relations (and solving them)
 • Recursion tree method
 • Guess and check method
• Time permitting
 • Master theorem
ONE DOES NOT SIMPLY
UNDERSTAND RECURSION
WITHOUT UNDERSTANDING RECURSION

DIVIDE AND CONQUER
Notable algorithms: mergesort, quicksort, binary search, ...
DIVIDE-AND-CONQUER DESIGN STRATEGY

• **divide**: Given a problem instance \(I \), construct one or more smaller problem instances \(I_1, \ldots, I_a \)
 - These are called **subproblems**
 - Usually, want subproblems to be small compared to the size of \(I \) (e.g., half the size)

• **conquer**: For \(1 \leq j \leq a \), solve instance \(I_j \) **recursively**, obtaining solutions \(S_1, \ldots, S_a \)

• **combine**: Given solutions \(S_1, \ldots, S_a \), use an appropriate combining function to find the solution \(S \) to the problem instance \(I \)
 - i.e., \(S = \text{Combine}(S_1, \ldots, S_a) \).
When you’re finished with background material and finally get to merge sort.
Here, a problem instance consists of an array A of n integers, which we want to sort in increasing order. The size of the problem instance is n.

divide: Split A into two subarrays: A_L consists of the first $\lfloor n/2 \rfloor$ elements in A and A_R consists of the last $\lceil n/2 \rceil$ elements in A.

conquer: Run Mergesort on A_L and A_R.

combine: After A_L and A_R have been sorted, use a function \textit{Merge} to merge A_L and A_R into a single sorted array. Recall that this can be done in time $Θ(n)$ with a single pass through A_L and A_R. We simply keep track of the “current” element of A_L and A_R, always copying the smaller one into the sorted array.
DIVIDE

105 7 13 8 14 1 19 11

4 10 98 16 31 5 21 12
MERGE: CONQUER AND COMBINE
MERGE SIMULATION 1

L

5 31

R

12 21

O

5 12 21 31
ANOTHER EXAMPLE MERGE STEP
MERGE SIMULATION 2

L
4 10 96 98

R
5 12 21 31

O
4 5 10 12 21 31 96 98
PSEUDOCODE FOR MERGESORT

1 Mergesort(A[1..n])
2 if n == 1 then return A
3 nL = ceil(n/2)
4 aL = A[1..nL]
5 aR = A[(nL+1)..n]
6 sL = Mergesort(aL)
7 sR = Mergesort(aR)
8 return Merge(sL, sR)
PSEUDOCODE FOR MERGE

```plaintext
Merge(aL[1..nL], aR[1..nR])
    aOut[1..(nL+nR)] = empty array
    iL = 1; iR = 1; iOut = 1

    while iL < nL and iR < nR
        if aL[iL] < aR[iR]
            aOut[iOut] = aL[iL]
            iL++ ; iOut++
        else
            aOut[iOut] = aR[iR]
            iR++ ; iOut++

    while iL < nL
        aOut[iOut] = aL[iL]
        iL++ ; iOut++

    while iR < nR
        aOut[iOut] = aR[iR]
        iR++ ; iOut++

    return aOut
```

There are still elements left in both arrays.
So, MergeSort(A) takes $O(n)$ time, plus the time for its two recursive calls!

How can we analyze this recursive program structure?
Hulk(n) = Face - Chin + Hulk(n - 1)

RECURRENT RELATIONS
A crucial analysis tool for recursive algorithms
Suppose a_1, a_2, \ldots, is an infinite sequence of real numbers.

A recurrence relation is a formula that expresses a general term a_n in terms of one or more previous terms a_1, \ldots, a_{n-1}.

A recurrence relation will also specify one or more initial values starting at a_1.

Solving a recurrence relation means finding a formula for a_n that does not involve any previous terms a_1, \ldots, a_{n-1}.

There are many methods of solving recurrence relations. Two important methods are guess-and-check and the recursion tree method.
Let $T(n)$ denote the time to run Mergesort on an array of length n.

- **divide** takes time $\Theta(n)$
- **conquer** takes time $T \left(\lceil \frac{n}{2} \rceil \right) + T \left(\lfloor \frac{n}{2} \rfloor \right)$
- **combine** takes time $\Theta(n)$

Recurrence relation:

$$T(n) = \begin{cases}
 T \left(\lceil \frac{n}{2} \rceil \right) + T \left(\lfloor \frac{n}{2} \rfloor \right) + \Theta(n) & \text{if } n > 1 \\
 \Theta(1) & \text{if } n = 1.
\end{cases}$$

$T(n)$ is a function of $T(...)$ so T is a recurrence relation.

How can we compute/solve for $T(n)$?

To make this easier, assume $n = 2^k$, which lets us ignore floors/ceilings.
If pants wore pants, would it wear them like this? or like this?

Compare vs:

\[T(n) \]
\[T(n - 1) \]
\[T(n - 2) \]

...

Recursion tree

\[T(n) \]
\[T(n/2) \]
\[T(n/2) \]

...

\[T(n/4) \]
\[T(n/4) \]

...

\[T(n/8) \]

...
Recursion Tree Method

![Recursion Tree](image)

<table>
<thead>
<tr>
<th>Level</th>
<th># of nodes</th>
<th>runtime per node</th>
<th>total runtime for level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(cn)</td>
<td>(cn)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(c(n/2))</td>
<td>(2c(n/2) = cn)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>(c(n/4))</td>
<td>(4c(n/4) = cn)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(\log n)</td>
<td>(n)</td>
<td>(c(n/n) = c)</td>
<td>(nc(n/n) = cn)</td>
</tr>
</tbody>
</table>

Total = \(cn \times \#\) levels

Total = \(cn \log_2(n)\)

So, mergesort has runtime \(O(n \log n)\)

Can also compute using a table...
Sample recurrence for two recursive calls on problem size $n/2$

$$T(n) = \begin{cases}
2T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \text{ is a power of 2} \\
d & \text{if } n = 1,
\end{cases}$$

where c and d are constants.

We can solve this recurrence relation when n is a power of two, by constructing a recursion tree, as follows:

Step 1 Start with a one-node tree, say N, having the value $T(n)$.

Step 2 Grow two children of N. These children, say N_1 and N_2, have the value $T(n/2)$, and the value of N is replaced by cn.

Step 3 Repeat this process recursively, terminating when a node receives the value $T(1) = d$.

Step 4 Sum the values on each level of the tree, and then compute the sum of all these sums; the result is $T(n)$.
GUESS-AND-CHECK METHOD

• Suppose we have the following recurrence
 \[T(0) = 4 ; \quad T(n) = T(n - 1) + 6n - 5 \]

• **Guess** the form of the solution **any** way you like

• My approach

 • Recursively substitute the formula into itself

 • Try to identify patterns to **guess** the final closed form

• **Check** that the guess was correct
WORKED EXAMPLE

Recurrence: \(T(0) = 4 \); \(T(n) = T(n-1) + 6n - 5 \)

- \(T(n) = (T(n-2) + 6(n-1) - 5) + 6n - 5 \) (substitute)
- \(= T(n-2) + 6n - 6 - 5 + 6n - 5 \)
- \(= T(n-2) + 2(6n - 5) - 6 \)
- \(= (T(n-3) + 6(n-2) - 5) + 2(6n - 5) - 6 \) (substitute)
- \(= T(n-3) + 6n - 2(6) - 5 + 2(6n - 5) - 6 \)
- \(= T(n-3) + 3(6n - 5) - 6(1 + 2) \)

... identify patterns and guess what happens in the limit

- \(= T(0) + n(6n - 5) - 6(1 + 2 + 3 + \cdots + (n-1)) = \text{guess}(n) \)
• \(\text{guess}(n) = T(0) + n(6n - 5) - 6(1 + 2 + 3 + \cdots + (n - 1)) \)

• \(= 4 + 6n^2 - 5n - 6n(n - 1)/2 \) \hspace{1cm} \text{(simplify)}

• \(= 3n^2 - 2n + 4 \)

• Are we done?

• It depends… The form of \(\text{guess}(n) \) was an \textbf{educated guess}.
 • What we just saw is typically enough for this course.

• To be completely formal, we \textbf{prove} it correct using \textbf{induction}
• Recall: \(T(0) = 4 \); \(T(n) = T(n - 1) + 6n - 5 \); \(guess(n) = 3n^2 - 2n + 4 \)

• Want to prove: \(guess(n) = T(n) \) for all \(n \)

• Base case: \(guess(0) = 3(0)^2 - 2(0) + 4 = T(0) \)

• Inductive case: suppose \(guess(n) = T(n) \) for \(n \geq 0 \), show \(guess(n + 1) = T(n + 1) \).

\[
\begin{align*}
T(n + 1) &= T(n) + 6(n + 1) - 5 \\
&= guess(n) + 6(n + 1) - 5 \\
&= 3n^2 + 4n + 5 \\
guess(n + 1) &= 3(n + 1)^2 - 2(n + 1) + 4 \\
&= 3n^2 + 4n + 5 = T(n + 1)
\end{align*}
\]
ANOTHER APPROACH

• Suppose you look for a while at the previous recurrence:
 • \(T(0) = 4 \); \(T(n) = T(n - 1) + 6n - 5 \)
• With some experience, you might just guess it’s quadratic
• If you’re right, it should have the form:
 • \(an^2 + bn + c \) for some unknown constants \(a, b, c \)
• So, just carry the unknown constants into the proof!
 • You can then determine what the constants must be
 for the proof to work out
\[T(0) = 4 ; T(n) = T(n - 1) + 6n - 5 ; \text{guess}(n) = an^2 + bn + c \]

Want to prove: \(\text{guess}(n) = T(n) \) for all \(n \)

Base case: \(\text{guess}(0) = a(0)^2 + b(0) + c = T(0) = 4 \)

this holds \textit{iff} \(c = 4 \) \((a, b \text{ can be anything}) \)

Inductive case: \textbf{suppose} \(\text{guess}(n) = T(n) \) for \(n \geq 0 \),
\textbf{show} \(\text{guess}(n + 1) = T(n + 1) \).

\[
T(n + 1) = T(n) + 6(n + 1) - 5 \quad \text{(by definition)}
\]
\[
= \text{guess}(n) + 6(n + 1) - 5 \quad \text{(by inductive hypothesis)}
\]
\[
= an^2 + bn + 4 + 6(n + 1) - 5 \quad \text{(substitute)}
\]
\[
= an^2 + (b + 6)n + 5 \quad \text{(simplify)}
\]
• Recall: \(\text{guess}(n) = an^2 + bn + c \) where \(c = 4 \)

• Inductive case: \textbf{suppose} \(\text{guess}(n) = T(n) \) for \(n \geq 0 \), \textbf{show} \(\text{guess}(n + 1) = T(n + 1) \).

• \(T(n + 1) = an^2 + (b + 6)n + 5 \) (continue previous slide)

• \(\text{guess}(n + 1) = a(n + 1)^2 + b(n + 1) + 4 \) (by definition)

• \(= a(n^2 + 2n + 1) + bn + b + 4 \) (simplify)

• \(= an^2 + (2a + b)n + (a + b + 4) \) (rearrange polynomial)

• We want this to be equal to \(T(n + 1) \)

• \(an^2 + (2a + b)n + (a + b + 4) = an^2 + (b + 6)n + 5 \)

• equivalent to \((2a + b) = (b + 6) \) and \((a + b + 4) = 5 \)

• first implies \(a = 3 \) plug \(a \) into second to get \(b = 5 - 4 - 3 = -2 \)

So, inductive hypothesis is \textbf{correct} for \(a = 3, b = -2, c = 4 \)
TIME PERMITTING

Might not get here...
MASTER THEOREM FOR RECURRENCES

• Provides a formula for solving many recurrence relations
• We start with a simplified version

Suppose that \(a \geq 1 \) and \(b > 1 \). Consider the recurrence

\[
T(n) = aT \left(\frac{n}{b} \right) + \Theta(n^y), \text{ where } n \text{ is a power of } b.
\]

Denote \(x = \log_b a \). Then

\[
T(n) \in \begin{cases}
\Theta(n^x) & \text{if } y < x \\
\Theta(n^x \log n) & \text{if } y = x \\
\Theta(n^y) & \text{if } y > x.
\end{cases}
\]
Suppose that $a \geq 1$ and $b \geq 2$ are integers and

$$T(n) = aT\left(\frac{n}{b}\right) + cn^y, \quad T(1) = d.$$

Let $n = b^j$.

<table>
<thead>
<tr>
<th>level</th>
<th># nodes</th>
<th>value at each node</th>
<th>value of the level</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>1</td>
<td>cn^y</td>
<td>cn^y</td>
</tr>
<tr>
<td>$j - 1$</td>
<td>a</td>
<td>$c(n/b)^y$</td>
<td>$ca(n/b)^y$</td>
</tr>
<tr>
<td>$j - 2$</td>
<td>a^2</td>
<td>$c(n/b^2)^y$</td>
<td>$ca^2(n/b^2)^y$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>a^{j-1}</td>
<td>$c(n/b^{j-1})^y$</td>
<td>$ca^{j-1}(n/b^{j-1})^y$</td>
</tr>
<tr>
<td>0</td>
<td>a^j</td>
<td>d</td>
<td>da^j</td>
</tr>
</tbody>
</table>

Must sum the values over all levels!
Summing the values at all levels of the recursion tree, we have that

$$T(n) = d \alpha^j + cn^y \sum_{i=0}^{j-1} \left(\frac{a}{b^y} \right)^i.$$

Recall that $b^x = a$ and $n = b^j$. Hence $\alpha^j = (b^x)^j = (b^j)^x = n^x$.

The formula for $T(n)$ is a geometric sequence with ratio $r = a/b^y = b^{x-y}$:

$$T(n) = dn^x + cn^y \sum_{i=0}^{j-1} r^i.$$

There are three cases, depending on whether $r > 1$, $r = 1$ or $r < 1$.
THE THREE CASES FOR r

<table>
<thead>
<tr>
<th>case</th>
<th>r</th>
<th>y, x</th>
<th>complexity of $T(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>heavy leaves</td>
<td>$r > 1$</td>
<td>$y < x$</td>
<td>$T(n) \in \Theta(n^x)$</td>
</tr>
<tr>
<td>balanced</td>
<td>$r = 1$</td>
<td>$y = x$</td>
<td>$T(n) \in \Theta(n^x \log n)$</td>
</tr>
<tr>
<td>heavy top</td>
<td>$r < 1$</td>
<td>$y > x$</td>
<td>$T(n) \in \Theta(n^y)$</td>
</tr>
</tbody>
</table>

heavy leaves means that the value of the recursion tree is dominated by the values of the leaf nodes.

balanced means that the values of the levels of the recursion tree are constant (except for the last level).

heavy top means that the value of the recursion tree is dominated by the value of the root node.
Let

\[S = \sum_{i=0}^{j-1} r^i. \]

In case 1, we have \(x > y \) so \(r > 1 \). \(S \in \Theta(r^j) \), so \(T(n) \in \Theta(n^x + n^yr^j) \). However,

\[r^j = (b^{x-y})^j = (b^j)^{x-y} = n^{x-y}. \]

Therefore

\[T(n) \in \Theta(n^x + n^yn^{x-y}) = \Theta(n^x). \]

In case 2, we have \(x = y \) so \(r = 1 \). \(S \in \Theta(j) = \Theta(\log n) \), so

\[T(n) \in \Theta(n^x + n^y \log n) = \Theta(n^x + n^x \log n) = \Theta(n^x \log n). \]

In case 3, we have \(x < y \) so \(r < 1 \). \(S \in \Theta(1) \), so

\[T(n) \in \Theta(n^x + n^y) = \Theta(n^y). \]

The complexity does not depend on the initial value \(d \).
Recall: simplified master theorem

Suppose that $a \geq 1$ and $b > 1$. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^y), \text{ where } n \text{ is a power of } b.$$

Denote $x = \log_b a$. Then

$$T(n) \in \begin{cases}
\Theta(n^x) & \text{if } y < x \\
\Theta(n^x \log n) & \text{if } y = x \\
\Theta(n^y) & \text{if } y > x.
\end{cases}$$

Questions: $a=?$ $b=?$ $y=?$ $x=?$ which Θ function?
General Master Theorem

Suppose that \(a \geq 1\) and \(b > 1\). Consider the recurrence

\[
T(n) = aT\left(\frac{n}{b}\right) + f(n),
\]

where \(n\) is a power of \(b\). Denote \(x = \log_b a\). Then

\[
T(n) \in \begin{cases}
 \Theta(n^x) & \text{if } f(n) \in O(n^{x-\epsilon}) \text{ for some } \epsilon > 0 \\
 \Theta(n^x \log n) & \text{if } f(n) \in \Theta(n^x) \\
 \Theta(f(n)) & \text{if } f(n)/n^{x+\epsilon} \text{ is an increasing function of } n \\
 & \text{for some } \epsilon > 0.
\end{cases}
\]

Example recurrence:

\[
T(n) = 3T(n/4) + n \log n
\]

Arbitrary function of \(n\) (not just \(cn^y\))

Must reason about relationship between \(f(n)\) and \(n^x\)
REVISITING THE RECURSION TREE METHOD

- Some recurrences with complex $f(n)$ functions (such as $f(n) = \log n$) can still be solved "by hand"

- Example: Let $n = 2^j$; $T(1) = 1$; $T(n) = 2T\left(\frac{n}{2}\right) + n \log n$

<table>
<thead>
<tr>
<th>level</th>
<th># nodes</th>
<th>value at each node</th>
<th>value of the level</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>1</td>
<td>$j2^j$</td>
<td>$j2^j$</td>
</tr>
<tr>
<td>$j-1$</td>
<td>2</td>
<td>$(j-1)2^{j-1}$</td>
<td>$(j-1)2^j$</td>
</tr>
<tr>
<td>$j-2$</td>
<td>2^2</td>
<td>$(j-2)2^{j-2}$</td>
<td>$(j-2)2^j$</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>1</td>
<td>2^{j-1}</td>
<td>2^1</td>
<td>2^j</td>
</tr>
<tr>
<td>0</td>
<td>2^j</td>
<td>1</td>
<td>2^j</td>
</tr>
</tbody>
</table>

Must **sum** the values over all levels!
REVISITING THE RECURRENCE TREE METHOD

- Recall: \(n = 2^j \); \(T(1) = 1 \); \(T(n) = 2T\left(\frac{n}{2}\right) + n \log n \)

Summing the values at all levels of the recursion tree, we have

\[
T(n) = 2^j \left(1 + \sum_{i=1}^{j} i \right) = 2^j \left(1 + \frac{j(j + 1)}{2} \right).
\]

Since \(n = 2^j \), we have \(j = \log_2 n \) and \(T(n) \in \Theta(n(\log n)^2) \).
NEXT TIME

• More divide and conquer problems
• Non-dominated points
• Multiplication of large numbers