CS 341: ALGORITHMS

Lecture 6: divide and conquer

Slides by Trevor Brown (some material from Doug Stinson and Semih Salihoglu)

trevor.brown@uwaterloo.ca

(http://tbrown.pro)
FINISHING UP LAST TIME
REVISITING THE RECURSION TREE METHOD

- Some recurrences with complex \(f(n) \) functions (such as \(f(n) = \log n \)) can still be solved “by hand”

- Example: Let \(n = 2^i \); \(T(1) = 1 \); \(T(n) = 2T\left(\frac{n}{2}\right) + n \log n \)

<table>
<thead>
<tr>
<th>Level</th>
<th># of nodes</th>
<th>runtime per node</th>
<th>total runtime for level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(n \log n)</td>
<td>(n \log n)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(\frac{n}{2} \log \frac{n}{2})</td>
<td>(n \log \frac{n}{2})</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>(\frac{n}{4} \log \frac{n}{4})</td>
<td>(n \log \frac{n}{4})</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(k)</td>
<td>(2^k)</td>
<td>(\frac{n}{2^k} \log \frac{n}{2^k})</td>
<td>(n \log \frac{n}{2^k})</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\log n)</td>
<td>(n)</td>
<td>1</td>
<td>(n)</td>
</tr>
</tbody>
</table>

Must **sum** the values over all levels!

Top level recursive call

Base case: leaves of recursion tree
Recall \(n = 2^j \); \(T(1) = 1 \); \(T(n) = 2T \left(\frac{n}{2} \right) + n \log n \)

\[
T(n) = \sum_{k=0}^{\log n-1} n \log \frac{n}{2^k} + n = n \sum_{k=0}^{\log n-1} \log \frac{n}{2^k} + n
\]

\[
= n \left(\sum_{k=0}^{\log n-1} \log n - \sum_{k=0}^{\log n-1} \log 2^k \right) + n
\]

\[
= n \left(\log n \log n - \sum_{k=0}^{\log n-1} k \right) + n
\]

\[
= n \left(\log^2 n - \frac{(\log n - 1) \log n}{2} \right) + n
\]

\[
\in \Theta(n \log^2 n)
\]
FAST MATRIX MULTIPLICATION

Matrix Multiplication

Neural Network
Matrix Multiplication

- Input: A and B
- Output: their product $C = AB$
- Word-RAM model (64-bit ints)
- Naïve algorithm for $n \times n$ matrices:
 - For each output cell C_{ij}

 \[
 C_{ij} = \text{DotProd}(\text{row}_i(A), \text{col}_j(B)^T)
 \]

 \[
 = \sum_{k=1}^{n} A_{ik}B_{kj}
 \]
 - Running time?
ATTEMPTING A BETTER SOLUTION

• What if we first **partition** the matrix into **sub-matrices**
• Then **divide and conquer** on the **sub-matrices**
• Example of partitioning: 4x4 matrix into four 2x2 matrices

\[
\begin{bmatrix}
M_1 & M_2 \\
M_3 & M_4 \\
\end{bmatrix} =
\begin{bmatrix}
a_1 & b_1 & a_2 & b_2 \\
c_1 & d_1 & c_2 & d_2 \\
a_3 & b_3 & a_4 & b_4 \\
c_3 & d_3 & c_4 & d_4 \\
\end{bmatrix}
\]
D&C Matrix Multiplication: Problem Decomposition

Let

\[A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}, \quad C = AB = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \]

If \(A, B \) are \(n \) by \(n \) matrices, then \(a, b, \ldots, h, r, s, t, u \) are \(\frac{n}{2} \) by \(\frac{n}{2} \) matrices, where

\[
\begin{align*}
r &= ae + bg \\
t &= ce + dg
\end{align*}
\]

\[
\begin{align*}
s &= af + bh \\
u &= cf + dh
\end{align*}
\]

We require 8 multiplications of \(\frac{n}{2} \) by \(\frac{n}{2} \) matrices in order to compute \(C = AB \).

What is the complexity of the resulting divide-and-conquer algorithm?
DERIVING A RECURRENCE

• MatrixMultiply performs $T(n)$ work, consisting of:

 • **Eight recursive calls** to perform multiplications on $\frac{n}{2} \times \frac{n}{2}$ matrices

 • **Four additions** of $\frac{n}{2} \times \frac{n}{2}$ matrices
 • Work: $4 \left(\frac{n}{2} \cdot \frac{n}{2} \right) \in \Theta(n^2)$

 $\begin{align*}
 r &= ae + bg \\
 t &= ce + dg \\
 s &= af + bh \\
 u &= cf + dh
 \end{align*}$

 $T(n) = 8T \left(\frac{n}{2} \right) + \Theta(n^2)$
SOLVE USING THE (SIMPL.) MASTER THEOREM

Suppose that $a \geq 1$ and $b > 1$. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^y), \text{ where } n \text{ is a power of } b.$$

Denote $x = \log_b a$. Then

$$T(n) \in \begin{cases}
\Theta(n^x) & \text{if } y < x \\
\Theta(n^x \log n) & \text{if } y = x \\
\Theta(n^y) & \text{if } y > x.
\end{cases}$$

Recurrence: $T(n) = 8T\left(\frac{n}{2}\right) + \Theta(n^2)$

$a = 8 \quad b = 2 \quad y = 2 \quad x = \log_2 8 = 3$

$x > y \text{ so } T(n) \in \Theta(n^x)$

$a = ? \quad b = ? \quad y = ? \quad x = ?$

$T(n) \in \Theta(n^3)$
Define

\[A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}, \quad C = AB = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \]

\[P_1 = a(f - h) \]
\[P_3 = (c + d)e \]
\[P_5 = (a + d)(e + h) \]
\[P_7 = (a - c)(e + f) \]
\[P_2 = (a + b)h \]
\[P_4 = d(g - e) \]
\[P_6 = (b - d)(g + h) \]

Then, compute

\[r = P_5 + P_4 - P_2 + P_6 \]
\[s = P_1 + P_2 \]
\[t = P_3 + P_4 \]
\[u = P_5 + P_1 - P_3 - P_7 \]

This simplifies to

\[t = ce + dg \]

We now require only 7 multiplications of \(\frac{n}{2} \) by \(\frac{n}{2} \) matrices in order to compute \(C' = AB \).
The recurrence is $T(k) = 7T(k/2) + \Theta(k^2)$, so $T(k) \in \Theta(k^{\log_2 7}) = \Theta(n^{2.81})$ by the Master Theorem.

Details: $a = 7$, $b = 2$, so $x = \log_2 7 = 2.81$, $y = 2$, $x > y$ so we are in case 1 and $T(n) = \Theta(n^x) = \Theta(n^{2.81})$.

Strassen's algorithm was improved in 1990 by Coppersmith-Winograd. Their algorithm has complexity $O(n^{2.376})$. Some slight improvements have been found more recently.

<table>
<thead>
<tr>
<th>How much better is $\Theta(n^{2.81})$ than $\Theta(n^3)$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (n = 10,000)</td>
</tr>
<tr>
<td>$n^{2.81} \approx 174 \text{ billion}$</td>
</tr>
<tr>
<td>$n^3 = 1 \text{ trillion} (~6x \text{ more})$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How much better is $\Theta(n^{2.376})$ than $\Theta(n^3)$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (n = 10,000)</td>
</tr>
<tr>
<td>$n^{2.376} \approx 3.2 \text{ billion}$</td>
</tr>
<tr>
<td>$n^3 = 1 \text{ trillion} (~312x)$</td>
</tr>
</tbody>
</table>
THE SELECTION PROBLEM

NATURAL SELECTION
in progress...
THE SELECTION PROBLEM

- Input: An array A containing n distinct integer values, and an integer k between 1 and n
- Output: The k-th smallest integer in A
- **Minimum** is a special case where $k = 1$
- **Median** is a special case where $k = \frac{n}{2}$
- **Maximum** is a special case where $k = n$
- Simple algorithm for solving selection?
QuickSelect

Suppose we choose a **pivot** element y in the array A, and we **restructure** A so that all elements less than y precede y in A, and all elements greater than y occur after y in A. (This is exactly what is done in **Quicksort**, and it takes **linear time**.)

Then the kth smallest element of A is

$$
\begin{cases}
 y & \text{if } k = posn \\
 \text{the } k\text{th smallest element of } A_L & \text{if } k < posn \\
 \text{the } (k - posn)\text{th smallest element of } A_R & \text{if } k > posn.
\end{cases}
$$

We make (at most) one recursive call at each level of the recursion.
QuickSelect(k, A[1..n])
 if n = 1 then return A[1] // base case

 y = A[1] // pick an arbitrary pivot
 (AL, AR, posn) = Restructure(A, y)

 if k == posn return y
 else if k < posn then return QuickSelect(k, AL)
 else return QuickSelect(k - posn, AR)

Restructure(A[1..n], y)
 AL = new array[1..n] // allocate more than enough
 AR = new array[1..n] // to avoid need for expansion
 nL = 0, nR = 0

 for i = 1 .. n
 if A[i] < y then AL[nL++] = A[i]
 else A[i] > y then AR[nR++] = A[i]

 return (AL, AR, nL+1) // nL+1 is the new index of y
Average-case Analysis of QuickSelect

We say that a pivot is **good** if \(posn \) is in the middle half of \(A \), i.e., \(n/4 \leq posn \leq 3n/4 \).

The probability that a pivot is good is 1/2.

On average, after **two iterations**, we will encounter a good pivot.

If a pivot is good, then \(|A_L| \leq 3n/4 \) and \(|A_R| \leq 3n/4 \).

With an **expected** linear amount of work, the size of the subproblem is reduced by at least 25%.

Let’s consider the **average-case** recurrence relation:

\[
T(n) = T(3n/4) + \Theta(n).
\]

Apply the **Master Theorem** with \(a = 1 \), \(b = 4/3 \) and \(y = 1 \). Here \(x = \log_{4/3} 1 = 0 < 1 = y \) so we are in case 3.

This yields \(T(n) \in \Theta(n) \) on average.
Here is a more rigorous proof of the average-case complexity: We say the algorithm is in phase j if the current subarray has size s, where

$$n \left(\frac{3}{4} \right)^{j+1} < s \leq n \left(\frac{3}{4} \right)^j.$$

Let X_j be a random variable that denotes the amount of computation time occurring in phase j. If the pivot is in the middle half of the current subarray, then we transition from phase j to phase $j+1$. This occurs with probability $1/2$, so the expected number of recursive calls in phase j is 2. The computing time for each recursive call is linear in the size of the current subarray, so $E[X_j] \leq 2cn(3/4)^j$ (where $E[\cdot]$ denotes the expectation of a random variable). The total time of the algorithm is given by $X = \sum_{j \geq 0} X_j$. Therefore

$$E[X] = \sum_{j \geq 0} E[X_j] \leq 2cn \sum_{j \geq 0} (3/4)^j = 8cn \in O(n).$$

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}, \text{ for } |r| < 1.$$