CS 341: ALGORITHMS

Trevor Brown

trevor.brown@uwaterloo.ca
THIS TIME

• Divide and conquer algorithms
 • (Finishing) Strassen matrix multiplication
• Selection (k-th smallest element)
 • Average case $O(n)$ time algorithm
 • Worst case $O(n)$ time algorithm
• Closest pair of points in 2D
STRAßEN MATRIX MULTIPLICATION

Define

\[A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}, \quad C = AB = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \]

\[P_1 = a(f - h) \quad P_2 = (a + b)h \]
\[P_3 = (c + d)e \quad P_4 = d(g - e) \]
\[P_5 = (a + d)(e + h) \quad P_6 = (b - d)(g + h) \]
\[P_7 = (a - c)(e + f). \]

Then, compute

\[r = P_5 + P_4 - P_2 + P_6 \quad s = P_1 + P_2 \]
\[t = P_3 + P_4 \quad u = P_5 + P_1 - P_3 - P_7. \]

We now require only 7 multiplications of \(\frac{n}{2} \) by \(\frac{n}{2} \) matrices in order to compute \(C = AB \).
The verifications are somewhat tedious but straightforward.

For example,

\[P_5 + P_4 - P_2 + P_6 \]
\[= (a + d)(e + h) + d(g - e) - (a + b)h + (b - d)(g + h) \]
\[= ae + ah + de + dh + dg - de - ah - bh + bg + bh - dg - dh \]
\[= ae + bg, \]

The recurrence is \(T(k) = 7T(k/2) + \Theta(k^2) \), so
\(T(k) \in \Theta(k^{\log_2 7}) = \Theta(n^{2.81}) \) by the **Master Theorem**.

Details: \(a = 7, b = 2 \), so \(x = \log_2 7 = 2.81, y = 2, x > y \) so we are in case 1 and \(T(n) = \Theta(n^x) = \Theta(n^{2.81}) \).

Strassen's algorithm was improved in 1990 by Coppersmith-Winograd. Their algorithm has complexity \(O(n^{2.376}) \). Some slight improvements have been found more recently.
THE SELECTION PROBLEM

• Input: An array A containing n distinct integer values, and an integer k between 1 and n
• Output: The k-th smallest integer in A
• When $k=1$: output is smallest integer in A
• When $k=2$: output is 2nd smallest integer in A
• Median is a special case of Selection where $k = \lceil n/2 \rceil$
• Simple algorithms for solving selection?
QuickSelect

Suppose we choose a pivot element y in the array A, and we restructure A so that all elements less than y precede y in A, and all elements greater than y occur after y in A. (This is exactly what is done in Quicksort, and it takes linear time.)

Then the kth smallest element of A is

$$
\begin{cases}
 y & \text{if } k = posn \\
 \text{the } k\text{th smallest element of } A_L & \text{if } k < posn \\
 \text{the } (k - posn)\text{th smallest element of } A_R & \text{if } k > posn.
\end{cases}
$$

We make (at most) one recursive call at each level of the recursion.
QuickSelect(k, n, A)
 if n = 1 then return A[1]
 y = A[1] // pick an arbitrary pivot
 (AL, AR, posn) = Restructure(A, y)
 if k == posn return y
 else if k < posn then return QuickSelect(k, posn - 1, AL)
 else return QuickSelect(k - posn, n - posn, AR)

Restructure(A[1..n], y)
 AL = new array[1..n] // allocate more than enough
 AR = new array[1..n] // to avoid need for expansion
 sizeL = 0, sizeR = 0
 for i = 1 .. n
 if A[i] < y then
 AL[sizeL] = A[i] ; sizeL++
 else if A[i] > y then
 AR[sizeR] = A[i] ; sizeR++
 position_of_y = sizeL // alias included for clarity
 return (AL, AR, position_of_y)
Average-case Analysis of QuickSelect

We say that a pivot is good if \(\text{posn} \) is in the middle half of \(A \), i.e., \(n/4 \leq \text{posn} \leq 3n/4 \).

The probability that a pivot is good is \(1/2 \).

On average, after two iterations, we will encounter a good pivot.

If a pivot is good, then \(|A_L| \leq 3n/4 \) and \(|A_R| \leq 3n/4 \).

With an expected linear amount of work, the size of the subproblem is reduced by at least 25%.

Let’s consider the average-case recurrence relation:
\[T(n) = T(3n/4) + \Theta(n). \]

Apply the Master Theorem with \(a = 1 \), \(b = 4/3 \) and \(y = 1 \). Here \(x = \log_{4/3} 1 = 0 < 1 = y \) so we are in case 3.

This yields \(T(n) \in \Theta(n) \) in average.
Here is a more rigorous proof of the average-case complexity: We say the algorithm is in phase j if the current subarray has size s, where

$$n \left(\frac{3}{4} \right)^{j+1} < s \leq n \left(\frac{3}{4} \right)^j.$$

Let X_j be a random variable that denotes the amount of computation time occurring in phase j. If the pivot is in the middle half of the current subarray, then we transition from phase j to phase $j + 1$. This occurs with probability $1/2$, so the expected number of recursive calls in phase j is 2. The computing time for each recursive call is linear in the size of the current subarray, so $E[X_j] \leq 2cn(3/4)^j$ (where $E[\cdot]$ denotes the expectation of a random variable). The total time of the algorithm is given by $X = \sum_{j \geq 0} X_j$. Therefore

$$E[X] = \sum_{j \geq 0} E[X_j] \leq 2cn \sum_{j \geq 0} (3/4)^j = 8cn \in O(n).$$

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1 - r}, \text{ for } |r| < 1.$$
TAKING SELECTION FURTHER

• We just showed:
 • QuickSelect with average case runtime in $O(n)$
• Next up:
 • Median-of-medians QuickSelect (MOM-QuickSelect)
 • worst case runtime in $O(n)$

Relies on getting a good pivot within $O(1)$ recursive calls on average

The algorithm we will see picks a good pivot in every recursive call

Must get a good pivot within $O(1)$ recursive calls always
HIGH LEVEL ALGORITHM

• Similar to QuickSelect
• **Choose** a pivot
• Move smaller elements to the left of the pivot, and larger elements to the right of the pivot
• Recursively call MOM-QuickSelect on **one** subarray (left OR right)
• Only difference is **how** we choose the pivot
• **Always** want to pick a **good pivot**
ALWAYS PICKING A GOOD PIVOT

Example input
A[1...50]:

11, 38, 6, 21, 20, 17, 14, 9, 7, 5, 8, 34, 49, 47, 28, 18, 44, 31, 46, 48, 27, 4, 2, 50, 23, 45, 3, 13, 43, 22, 10, 32, 35, 41, 24, 1, 30, 12, 15, 26, 16, 19, 36, 33, 37, 39, 25, 40, 29, 42

<table>
<thead>
<tr>
<th>Transform into columns of 5</th>
<th>Find median of each row</th>
<th>Build array of medians</th>
</tr>
</thead>
<tbody>
<tr>
<td>11, 38, 6, 21, 20</td>
<td>11, 38, 6, 21, 20, 17, 14, 9, 7, 5, 8, 34, 49, 47, 28, 18, 44, 31, 46, 48, 27, 4, 2, 50, 23, 45, 3, 13, 43, 22, 10, 32, 35, 41, 24, 1, 30, 12, 15, 26, 16, 19, 36, 33, 37, 39, 25, 40, 29, 42</td>
<td>20, 9, 34, 44, 23, 22, 32, 15, 33, 39</td>
</tr>
<tr>
<td>17</td>
<td>17, 14, 9, 7, 5</td>
<td>20, 9, 34, 44, 23, 22, 32, 15, 33, 39</td>
</tr>
<tr>
<td>8</td>
<td>8, 34, 49, 47, 28</td>
<td>20, 9, 34, 44, 23, 22, 32, 15, 33, 39</td>
</tr>
<tr>
<td>18</td>
<td>18, 44, 31, 46, 48</td>
<td>20, 9, 34, 44, 23, 22, 32, 15, 33, 39</td>
</tr>
<tr>
<td>27</td>
<td>27, 4, 2, 50, 23</td>
<td>20, 9, 34, 44, 23, 22, 32, 15, 33, 39</td>
</tr>
<tr>
<td>45</td>
<td>45, 3, 13, 43, 22</td>
<td>20, 9, 34, 44, 23, 22, 32, 15, 33, 39</td>
</tr>
<tr>
<td>10</td>
<td>10, 32, 35, 41, 24</td>
<td>20, 9, 34, 44, 23, 22, 32, 15, 33, 39</td>
</tr>
<tr>
<td>1</td>
<td>1, 30, 12, 15, 26</td>
<td>20, 9, 34, 44, 23, 22, 32, 15, 33, 39</td>
</tr>
<tr>
<td>16</td>
<td>16, 19, 36, 33, 37</td>
<td>20, 9, 34, 44, 23, 22, 32, 15, 33, 39</td>
</tr>
<tr>
<td>39</td>
<td>39, 25, 40, 29, 42</td>
<td>20, 9, 34, 44, 23, 22, 32, 15, 33, 39</td>
</tr>
</tbody>
</table>

Time complexity for this step?

Time complexity for this step?

Recursively find median of this smaller array: 23

Recursive problem size?
HOW GOOD IS THE PIVOT 23?

<table>
<thead>
<tr>
<th>Recall: median of each row</th>
<th>Imagine sorting each row:</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 38 6 21 20</td>
<td>6 11 20 21 38</td>
</tr>
<tr>
<td>17 14 9 7 5</td>
<td>5 7 20 9 20</td>
</tr>
<tr>
<td>8 34 49 47 28</td>
<td>8 28 34 20 20</td>
</tr>
<tr>
<td>18 44 31 46 48</td>
<td>18 31 44 20 20</td>
</tr>
<tr>
<td>27 4 2 50 23</td>
<td>2 4 23 20 20</td>
</tr>
<tr>
<td>45 3 13 43 22</td>
<td>3 13 22 20 20</td>
</tr>
<tr>
<td>10 32 35 41 24</td>
<td>10 24 32 20 20</td>
</tr>
<tr>
<td>1 30 12 15 26</td>
<td>1 12 15 20 20</td>
</tr>
<tr>
<td>16 19 36 33 37</td>
<td>16 19 33 20 20</td>
</tr>
<tr>
<td>39 25 40 29 42</td>
<td>25 29 39 20 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Then sorting rows by medians:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 7 9</td>
</tr>
<tr>
<td>1 12 15</td>
</tr>
<tr>
<td>6 11 20</td>
</tr>
<tr>
<td>3 13 22</td>
</tr>
<tr>
<td>2 4 23</td>
</tr>
<tr>
<td>10 24 32</td>
</tr>
<tr>
<td>16 19 33</td>
</tr>
<tr>
<td>25 29 39</td>
</tr>
</tbody>
</table>

elements < 23 is at least 3 × 5 − 1. This represents ~3/10ths of the input, or ~3\(n/10\).

elements > 23 is at most 10 × 5 − 3 × 5 − 1 = 7 × 5 − 1. This represents ~7/10ths of the input, or ~7\(n/10\).

Argument generalizes easily to input of size \(n\) instead of size 50. We recurse on input size 7\(n/10\) in the worst case.
Algorithm: MOM-QuickSelect\((k, n, A)\)

1. if \(n \leq 14 \) then sort \(A \) and return \((A[k])\)
2. write \(n = 10r + 5 + \theta \), where \(0 \leq \theta \leq 9 \)
3. construct \(B_1, \ldots, B_{2r+1} \) (subarrays of \(A \), each of size 5)
4. find medians \(m_1, \ldots, m_{2r+1} \) non-recursively
5. \(M \leftarrow [m_1, \ldots, m_{2r+1}] \)
6. \(y \leftarrow \text{MOM-QuickSelect}(r + 1, 2r + 1, M) \)
7. \((A_L, A_R, \text{posn}) \leftarrow \text{Restructure}(A, y)\)
8. if \(k = \text{posn} \) then return \((y)\)
9. else if \(k < \text{posn} \) then return \((\text{MOM-QuickSelect}(k, \text{posn} - 1, A_L))\)
10. else return \((\text{MOM-QuickSelect}(k - \text{posn}, n - \text{posn}, A_R))\)

\[
T(n) \leq O(n) + T(n/5) + T(7n/10) \quad \text{if } n \geq 15
\]
\[
T(n) = O(1) \quad \text{if } n \leq 14
\]
The key fact is that $1/5 + 7/10 = 19/20 < 1$.

The fact that $T(n) \in \Theta(n)$ can be proven formally using guess-and-check (induction) or informally using the recursion tree method.

\[
T(n) \leq O(n) + T(n/5) + T(7n/10) \quad \text{if } n \geq 15
\]

\[
T(n) = O(1) \quad \text{if } n \leq 14
\]

\[
\sum_{i=0}^{\infty} n \left(\frac{9}{10} \right)^i = 10n \in \Theta(n)
\]
THE CLOSEST PAIR PROBLEM

◆ Input: Set P of n 2-D points

◆ Output: pair p and q s.t. dist(p, q) minimum over all pairs
◆ Break ties arbitrarily
◆ \(\text{dist}(p,q) = \sqrt{(p.x - q.x)^2 + (p.y - q.y)^2} \)
Can we Divide & Conquer?

Like non-dominated points: sort by x-axis & divide in half

Claim that doesn’t require a proof: closest pair (p, q):
1. (p, q) both in L or
2. (p, q) both in R or
3. One of (p, q) in L and one of (p, q) in R

We call this a spanning pair
DC Algorithm Template:

```
procedure Algorithm(P of n points):
    sort P by x values
    DC-CP(P)

procedure DC-CP(P sorted by x values):
    if (P.size ≤ 3) compare all & return closest;
    pair_L = DC-CP(P[1,...,n/2])
    pair_R = DC-CP(P[n/2+1,...,n])
    pair_s = findMinSpanningPair(P)
    return minDistPair(pair_L, pair_R, pair_s)
```

Q: How can we find the spanning pair quickly?
Observation 1

Let $\delta = \min (\text{dist}(\text{pair}_L), \text{dist}(\text{pair}_R))$

Then pair s (if closest globally) lies in the above 2δ-wide green strip.

Q: Why?
Q: Can p_5 be part of a globally closest pair?
A: No. Everything in R has dist $> \delta$ to p_5. And we already have a solution with dist $= \delta$.
Observation 2

◆ Say, p_7 (the lowest y valued point in strip) is in pair δ

◆ Then the other point can only lie in this $\delta \times \delta$ square.

Q: Why?

Has to be on the opposite side & can’t be > δ higher than p_7 on y axis.
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth…
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the δxδ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth…
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the δxδ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth…
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta \times \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...
Core Idea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the $\delta x \delta$ square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point
4. So on and so forth...

Switching sides might complicate code...
Turns out it’s not needed to get good time complexity.
A More Practical Idea

- Don’t differentiate between same and opposite side
- Just search the $2\delta \times \delta$ above rectangle each time
A More Practical Idea

- Don’t differentiate between same and opposite side
- Just search the $2\delta \times \delta$ above rectangle each time
A More Practical Idea

- Don’t differentiate between same and opposite side
- Just search the $2\delta \times \delta$ above rectangle each time
A More Practical Idea

- Don’t differentiate between same and opposite side
- Just search the $2\delta \times \delta$ above rectangle each time
DC-CP 1 (1)

procedure Algorithm(P of n points):
 sort P by x values
 DC-CP1(P)

procedure DC-CP1(P sorted by x values):
 if (P.size ≤ 3) compare all & return closest;
 pair_L = DC-CP1(P[1,...,n/2])
 pair_R = DC-CP1(P[n/2+1,...,n])
 \(\delta = \min(\text{dist}(\text{pair_L, pair_R})) \)
 pair_S = \text{findMinSpanningPair}(\delta, P)
 return \(\min(\text{pair_L, pair_R, pair_S}) \)
procedure findMinSpanningPair (δ, P):
 S = select each p in P s.t \(|p_{n/2}.x-p.x| \leq \delta\) → O(n)
 sort(S by increasing y values) → O(n log n)
 minDist = +∞
 minPair = null;
 for i = 1 to S.length: → O(n)
 j = i+1 (compare S[i] to points above it)
 while \(|S[j].y - S[i].y| \leq \delta\):
 if (dist(S[i], S[j]) < minDist):
 minPair = (S[i], S[j]);
 minDist = dist(S[i], S[j])
 j++;
 return minPair

Q: How many times does the while loop execute?
Claim: O(1) times
For a point p, how many times does while loop execute?

Obs: as many times as there are points in the $2\delta \times \delta$ rectangle.

Q: How many points can be in a $2\delta \times \delta$ rectangle?

A: As many as in the left $\delta \times \delta$ square + right $\delta \times \delta$ square.
Recall: Each point in the square is at least at distance δ.

Q1: How many can fit the lower triangle?

A: 3

Why?

Because δ is the smallest distance between any pair of points that are both in L, or both in R.

no other point can be inside the triangle except the other two corners
Points in a $\delta \times \delta$ Square

Recall: Each point in the square is at least at distance δ.

Q1: How many can fit the lower triangle?
 A: 3

Q2: How many can fit the square?
 A: 4
For a point p, how many times does the while loop execute?

Obs: as many times as there are points in the $2\delta \times \delta$ rectangle.

$\# \text{points in the } 2\delta \times \delta \text{ rectangle} \leq 4 + 4 = 8$
procedure findMinSpanningPair (δ, P):
 S = select each p in P s.t |P[n/2].x-p.x| ≤ δ
 sort(S by increasing y values) → O(n log n)
 minDist = +∞
 minPair = null;
 for i = 1 to S.length: → O(n)
 j = i+1
 while (|S[j].y − S[i].y| ≤ δ):
 if (dist(S[i], S[j]) < minDist):
 minPair = (S[i], S[j])
 j++;
 return minPair

Total for this procedure: O(n log n)
procedure DC-CP1(P sorted by x values):
 if (P.size ≤ 3) compare all & return closest;
 pair_L = DC-CP1(P[1,…,n/2])
 pair_R = DC-CP1(P[n/2+1,…,n])
 δ = min(dist(pair_L, pair_R))
 pair_s = findMinSpanningPair(δ, P)
 return min(pair_L, pair_R, pair_s)

Recursive part: Outside Recursive Calls: n log n work.
\[T(n) = 2T(n/2) + n \log n \]

Exercise: Show by induction or recursion tree that
total work of recursive part is \(O(n \log^2 n) \).

Total Alg Work: \(O(n \log n) + O(n \log^2 n) = O(n \log^2 n) \).
AN IMPROVEMENT WE DID NOT COVER

... but which is easy to understand and interesting
IMPROVING THIS: SHAMOS’ ALGORITHM

• Sorting by y-values causes findMinSpanningPair to take $O(n \log n)$ time instead of $O(n)$ time

• This happens in each recursive call, and dominates the running time

• Avoid sorting P over and over by creating another copy of P that is pre-sorted by y-values
Recall:

```plaintext
procedure findMinSpanningPair (δ, P):
    S = select each p in P s.t |P[n/2].x-p.x| ≤ δ
    sort(S by increasing y values)
    minDist = +∞
    minPair = null;
    for i = 1 to S.length:
        j = i+1
        while (|S[j].y – S[i].y| ≤ δ):
            if (dist(S[i], S[j]) < minDist):
                minPair = (S[i], S[j])
            j++;
    return minPair
```

This step needs to go!
Shamos’ DC Algorithm (1975) (1)

procedure Algorithm(P of n points):
\[P_x = \text{sort P by x values in increasing order} \]
\[P_y = \text{sort P by y values in increasing order} \]
\[\text{DC-Shamos}(P_x, P_y) \]

procedure DC-Shamos(P_x, P_y):
\[\text{if (} P_x.\text{size} \leq 3 \text{) } \ldots; \]
\[P_{yL} = \text{select from } P_y \text{ points with } x \leq P_x[n/2].x \]
\[P_{yR} = \text{select from } P_y \text{ points with } x > P_x[n/2].x \]
\[\text{pair}_L = \text{DC-Shamos}(P_x[1,\ldots,n/2], P_{yL}) \]
\[\text{pair}_R = \text{DC-Shamos}(P_x[n/2+1,\ldots,n], P_{yR}) \]
\[\delta = \min(\text{dist}((\text{pair}_L, \text{pair}_R)) \]
\[\text{pair}_s = \text{findMinSpanningPairShamos}(\delta, P_x, P_y) \]
\[\text{return } \min(\text{pair}_L, \text{pair}_R, \text{pair}_s) \]
procedure findMinSpanningPairShamos(\(\delta, P_x, P_y\)):

S = select each \(p\) in \(P_y\) s.t \(|P_x[n/2].x - p.x| \leq \delta\)

\(minDist = +\infty\)

\(minPair = null;\)

for \(i = 1\) to \(S.length\):

\(j = i + 1\)

while \(|S[j].y - S[i].y| \leq \delta\):

\[\text{if } \text{dist}(S[i], S[j]) < \text{minDist} \]

\(\text{minPair} = (S[i], S[j])\)

\(j++;\)

return \(minPair\)

Total: \(O(n)\)
Runtime Analysis of Shamos’ Algorithm

Outside Recursive Calls: $O(n)$ work.

$$T(n) = 2T(n/2) + O(n)$$

By Master Theorem, total: $O(n \log n)$

(Also note: recurrence is the same as the recurrence for merge sort → immediately get $O(n \log n)$)

Total Work for Shamos

$= O(\text{time for sort}) + O(\text{time for DC-Shamos call})$

$= O(n \log n) + O(n \log n) = O(n \log n)$.