CS 341: ALGORITHMS

Trevor Brown

trevor.brown@uwaterloo.ca
THIS TIME

• “Slick” proof of greedy interval selection algorithm
• More greedy algorithms
 • Interval colouring
 • Rational knapsack
RECALL: INTERVAL SELECTION PROBLEM

- **Input:** a set $A = \{A_1, \ldots, A_n\}$ of time intervals
 - Each interval A_i has a start time s_i and a finish time f_i
- **Feasible solution:** a subset B of A containing pairwise disjoint intervals
- **Output:** a feasible solution of maximum size
 - i.e., one that maximizes $|B|

Where s_i and f_i are positive integers

Bad solution: only chose 3, but could choose 5!
A CORRECT GREEDY ALGORITHM

Sort the intervals in increasing order of **finishing times**. At any stage, choose the **earliest finishing** interval that is disjoint from all previously chosen intervals (i.e., the local evaluation criterion is f_i).
Induction is a standard way to prove correctness of greedy algorithms; however, sometimes shorter “slick” proofs are possible.

Let \(F = \{f_{i_1}, \ldots, f_{i_k}\} \) be the finishing times of the intervals in \(\mathcal{B} \).

No interval finishes strictly to the left

No interval starts strictly to the right

No interval is strictly between these points!

So, every interval chosen by optimal contains a point in \(F \)

No two intervals in \(O \) contain the same point in \(F \) (by disjointness)

So, there is an injective mapping from \(O \) to \(F \), so \(|O| \leq |F| \)
PROBLEM: INTERVAL COLOURING

Instance: A set $A = \{A_1, \ldots, A_n\}$ of intervals. For $1 \leq i \leq n$, $A_i = [s_i, f_i]$, where s_i is the **start time** of interval A_i and f_i is the **finish time** of A_i.

Feasible solution: A c-colouring is a mapping $\text{col} : A \rightarrow \{1, \ldots, c\}$ that assigns each interval a **colour** such that two intervals receiving the same colour are always disjoint.

Find: A c-colouring of A with the **minimum number of colours**.

Example

7 intervals, 7 colours. Feasible, but not optimal.
MORE EXAMPLES

Example

Not feasible!

Example

Same color, but disjoint. OK!

Example

Same color, but not disjoint... BAD

Example

7 intervals, 6 colours. Feasible, but not optimal

Example

7 intervals, 2 colours. Optimal
Greedy Strategies for Interval Colouring

As usual, we consider the intervals one at a time.

At a given point in time, suppose we have coloured the first $i < n$ intervals using d colours.

We will colour the $(i + 1)$st interval with any permissible colour. If it cannot be coloured using any of the existing d colours, then we introduce a new colour and d is increased by 1.

Question: In what order should we consider the intervals?
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

EXAMPLE:

ORDER MATTERS!

Consider intervals in the order they are given in the input: \(A_1\ldots A_{10}\)
We will colour the \((i + 1)\)st interval with **any permissible colour**. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a **new colour** and \(d\) is increased by 1.

Example:

Order Matters!

\(A_1\)	1
\(A_2\)	
\(A_3\)	
\(A_4\)	
\(A_5\)	
\(A_6\)	
\(A_7\)	
\(A_8\)	
\(A_9\)	
\(A_{10}\)	

x-axis

0 2 4 6 8 10 12 14 16 18 20
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

Example:

Order Matters!
We will colour the \((i + 1)\)st interval with **any permissible colour**. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a **new colour** and \(d\) is increased by 1.

Example:

Order Matters!
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.
We will colour the \((i + 1)\)st interval with **any permissible colour**. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a **new colour** and \(d\) is increased by 1.

Example:

ORDER MATTERS!
We will colour the \((i + 1)\)st interval with **any permissible colour**. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a **new colour** and \(d\) is increased by 1.

Example: Order Matters!

<table>
<thead>
<tr>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
<th>(A_5)</th>
<th>(A_6)</th>
<th>(A_7)</th>
<th>(A_8)</th>
<th>(A_9)</th>
<th>(A_{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x-axis

0 2 4 6 8 10 12 14 16 18 20
We will colour the \((i + 1)\)st interval with **any permissible colour**. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a **new colour** and \(d\) is increased by 1.

EXAMPLE:

ORDER MATTERS!
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

EXAMPLE:

ORDER MATTERS!
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

Example:

ORDER MATTERS!
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

Example:

Order matters!

Used 4 colours

Can we do better?
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

Example:

Order matters!

Pre-sort intervals by increasing start time!
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

EXAMPLE:
ORDER MATTERS!

Pre-sort intervals by increasing start time!
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

EXAMPLE:

ORDER MATTERS!
We will colour the \((i + 1)\)st interval with **any permissible colour**. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a **new colour** and \(d\) is increased by 1.

EXAMPLE:

ORDER MATTERS!
We will colour the \((i + 1)\)st interval with **any permissible colour**. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a **new colour** and \(d\) is increased by 1.

EXAMPLE:

ORDER MATTERS!
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

EXAMPLE:

ORDER MATTERS!
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

EXAMPLE:

ORDER MATTERS!

![Graph showing intervals and colours]
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

Example:

\[
\begin{array}{c|cccccc}
A_1 & 1 & & & & & \\
A_2 & 2 & & & & & \\
A_3 & 3 & & & & & \\
A_4 & & & & & & \\
A_5 & & & & & & \\
A_6 & & & & & & \\
A_7 & & & & & & \\
A_8 & & & & & & \\
A_9 & & & & & & \\
A_{10} & & & & & & \\
\end{array}
\]
We will colour the \((i + 1)\)st interval with **any permissible colour**. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a **new colour** and \(d\) is increased by 1.

EXAMPLE:

ORDER MATTERS!
We will colour the \((i + 1)\)st interval with **any permissible colour**. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a **new colour** and \(d\) is increased by 1.

<table>
<thead>
<tr>
<th>(A_i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE:

ORDER MATTERS!
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

EXAMPLE:

ORDER MATTERS!
We will colour the \((i + 1)\)st interval with any permissible colour. If it cannot be coloured using any of the existing \(d\) colours, then we introduce a new colour and \(d\) is increased by 1.

Example:

ORDER MATTERS!

Used 3 colours

Can we do better?
Algorithm: GreedyIntervalColouring (A)

1. sort the intervals so that $s_1 \leq \cdots \leq s_n$
2. $d \leftarrow 1$
3. $\text{finish}[1] \leftarrow f_1$
4. for $i \leftarrow 2$ to n
 - $\text{flag} \leftarrow \text{false}$
 - $c \leftarrow 1$
 - while $c \leq d$ and (not flag)
 - do
 - if $\text{finish}[c] \leq s_i$ then
 - $\text{flag} \leftarrow \text{true}$
 - $\text{colour}[i] \leftarrow c$
 - $\text{finish}[c] \leftarrow f_i$
 - else $c \leftarrow c + 1$
 - if not flag then
 - $d \leftarrow d + 1$
 - $\text{colour}[i] \leftarrow d$
 - $\text{finish}[d] \leftarrow f_i$
 - return (d, colour)

$d = \# \text{ of colours used so far}$

Interval 1 gets colour 1

For each interval A_i, search for an appropriate colour c

If $s_i \geq \text{finish}[c]$, then we can give A_i colour c without breaking feasibility

Consider interval $A_i = (s_i, f_i)$. If $s_i \geq \text{finish}[c]$, then we can give A_i colour c without breaking feasibility

If we didn’t reuse a colour, use a new colour

Check if we can use any colour c in $1..d$
EXAMPLE: RUNNING GREEDY
<table>
<thead>
<tr>
<th>i=1</th>
<th>d=1</th>
<th>finish[1]=</th>
</tr>
</thead>
</table>

Code **before** the loop: just assign colour 1

EXAMPLE:
(RUNNING GREEDY)
While loop over c. Check if we can reuse a color in $1..d$

EXAMPLE:
RUNNING GREEDY

<table>
<thead>
<tr>
<th>A_1</th>
<th>1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{10}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is $\text{finish}[1] \leq s_2$?
- No. We cannot reuse colour 1.
- Cannot reuse any colour. Create a new one!

x-axis
i = 2

While loop over c.
Check if we can reuse a color in 1..d

Is $finish[1] \leq s_2$?
No. We cannot reuse colour 1.

d = 2

finish[1] =

Cannot reuse any colour. Create a new one!

finish[2] =
While loop over c. Check if we can reuse a color in $1..d$

EXAMPLE: RUNNING GREEDY

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
<th>A_10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is $\text{finish}[1] \leq s_3$?

- No. We cannot reuse colour 1.

Is $\text{finish}[2] \leq s_3$?

- No. We cannot reuse colour 2.

Cannot reuse any colour. Create new one.
EXAMPLE: RUNNING GREEDY

While loop over c. Check if we can reuse a color in 1..d

Is \(f_1 \leq s_3 \)?
No. We cannot reuse colour 1.

Is \(f_2 \leq s_3 \)?
No. We cannot reuse colour 2.

Cannot reuse any colour. Create new one.
EXAMPLE: RUNNING GREEDY

While loop over c. Check if we can reuse a color in $1..d$

Is $f_{\text{finish}[1]} \leq s_4$?

Yes. We can reuse colour 1.

While loop over c. Check if we can reuse a color in $1..d$

<table>
<thead>
<tr>
<th>A_1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_2</td>
<td>2</td>
</tr>
<tr>
<td>A_3</td>
<td>3</td>
</tr>
<tr>
<td>A_4</td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
</tr>
<tr>
<td>A_{10}</td>
<td></td>
</tr>
</tbody>
</table>

i=4, d=3

Check if we can reuse a color in $1..d$

finish[1]=
finish[2]=
finish[3]=

x-axis
EXAMPLE: RUNNING GREEDY

While loop over \(c \). Check if we can reuse a color in 1..\(d \).

Is \(\text{finish}[1] \leq s_4 \)?

Yes. We can reuse colour 1.

\[
i = 4
\]

\[
d = 3
\]

\[
\text{finish}[1] =
\]

\[
\text{finish}[2] =
\]

\[
\text{finish}[3] =
\]
While loop over c. Check if we can reuse a color in $1..d$

EXAMPLE:
RUNNING GREEDY

Is $\text{finish}[1] \leq s_5$?
No. We **cannot** reuse colour 1.

Is $\text{finish}[2] \leq s_5$?
No. We **cannot** reuse colour 2.

Is $\text{finish}[3] \leq s_5$?
Yes. We **can** reuse colour 3.

<table>
<thead>
<tr>
<th>A_i</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{10}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLE: RUNNING GREEDY

While loop over c. Check if we can reuse a color in 1..d

Is \(f_1 \leq s_5 \)?
No. We cannot reuse colour 1.

Is \(f_2 \leq s_5 \)?
No. We cannot reuse colour 2.

Is \(f_3 \leq s_5 \)?
Yes. We can reuse colour 3.
EXAMPLE: RUNNING GREEDY

While loop over c. Check if we can reuse a color in 1..d

Is $finish[1] \leq s_6$?

No. We cannot reuse colour 1.

Is $finish[2] \leq s_6$?

Yes. We can reuse colour 2.

While loop over c. Check if we can reuse a color in 1..d

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
<th>A_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Is $finish[1] \leq s_6$?

No. We cannot reuse colour 1.

Is $finish[2] \leq s_6$?

Yes. We can reuse colour 2.
While loop over c. Check if we can reuse a color in $1..d$

EXAMPLE:
RUNNING GREEDY

<table>
<thead>
<tr>
<th>A_1</th>
<th>1</th>
<th>Finish[1] =</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_2</td>
<td>2</td>
<td>Finish[2] =</td>
</tr>
<tr>
<td>A_3</td>
<td>3</td>
<td>Finish[3] =</td>
</tr>
</tbody>
</table>

Is $finish[1] \leq s_6$?
No. We **cannot** reuse colour 1.

Is $finish[2] \leq s_6$?
Yes. We **can** reuse colour 2.

And so on, and so forth…
Correctness of the Algorithm

The correctness of this greedy algorithm can be proven inductively as well as by a “slick” method—we give the “slick” proof:

Let D denote the number of colours used by the algorithm.

Suppose $A_i = [s_i, f_i]$ is the first interval to receive the last colour, D.

For every colour $c < D$, there is an interval $A_c = [s_c, f_c]$ such that $s_c \leq s_i < f_c$ (i.e., A_c overlaps A_i).
A₁ is the last interval that received colour 1 at the time A₃ received its colour.

s₁ ≤ s₃ because of the pre-sorting step.

First interval with colour D=3 is A₃.

Want to argue: for each colour c < D, there exists an interval Aᵞ with colour c that intersects A₃.

So f₁ is finish[1], and of course finish[1] > s₃ (or we would have reused colour 1).

Since s₁ ≤ s₃ ≤ f₁, A₁ must intersect A₃.

Same argument for A₂ intersecting A₃...

Intersection of three intervals implies three colours are required.
General Argument

We know \(\text{finish}[1] > s_D \), because if \(\text{finish}[1] \leq s_D \) then the greedy algorithm reuses colour 1!

Similarly, we know \(\text{finish}[2] > s_D \), \(\text{finish}[3] > s_D \), ...

And, we know these intervals all start at or before time \(s_D \)

So they must all intersect \(A_D \).

\[\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\text{colour} & 1 & 2 & 3 & 4 & 5 & \ldots & \text{colour } D-1 & \text{colour } D \\
\hline
\text{finish[1]} & & & \times & \times & \times & \ldots & &
\hline
\text{finish[2]} & & & & & & \ldots & &
\hline
\text{finish[3]} & & & & & & \ldots & &
\hline
\end{array} \]
Correctness of the Algorithm

The correctness of this greedy algorithm can be proven inductively as well as by a "slick" method—we give the "slick" proof:

Let D denote the number of colours used by the algorithm.

Suppose $A_i = [s_i, f_i]$ is the first interval to receive the last colour, D.

For every colour $c < D$, there is an interval $A_c = [s_c, f_c]$ such that $s_c \leq s_i < f_c$ (i.e., A_c overlaps A_i).

Therefore we have D intervals, all of which contain the point s_i.

These D intervals must all receive different colours, so there is no colouring with fewer than D colours.
The complexity of the algorithm is $O(nD)$, where D is the value of d returned by the algorithm.

We don’t know the value of D ahead of time; all we know is that $1 \leq D \leq n$.

If it turns out that $D \in \Omega(n)$, then the best we can say is that the complexity is $O(n^2)$.

What inefficiencies exist in this algorithm?

What data structure would allow a more efficient algorithm to be designed?

What would be the complexity of an algorithm making use of an appropriate data structure?
IMPROVING THIS ALGORITHM

• Current greedy algorithm:
 • For each interval \(A_i \), compare its start time \(s_i \) with the
 \textbf{finish}[c] times of \textbf{all} colours introduced so-far
 • Why? Looking for a \textbf{finish}[c] time that is earlier than \(s_i \)
 • We are doing \textbf{linear search}... Can we do better?
 • Use a priority queue to keep track of the \textbf{earliest \textbf{finish}[c]} at all times in the algorithm
 • Then we only need to look at \textbf{minimum element}
EXAMPLE: HEAP-BASED ALGORITHM

Min element: NULL

Heap
EXAMPLE: HEAP-BASED ALGORITHM

Min element: NULL

Heap

Iteration i=1 Check heap minimum Empty, so a new colour is needed

A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9 A_{10}

x-axis
EXAMPLE: HEAP-BASED ALGORITHM

<table>
<thead>
<tr>
<th>Min element:</th>
<th>finish at time 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td>finish at time 3</td>
</tr>
</tbody>
</table>

Iteration i=1
Check heap minimum
Empty, so a new colour is needed

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
<th>A_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

x-axis

Finish at time 3
EXAMPLE: HEAP-BASED ALGORITHM

Min element: finish at time 3
Heap finish at time 3

Iteration i=2
Check heap minimum
Check if finish time 3 is before s_2
No. New colour!

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
<th>A_10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
</tr>
<tr>
<td>A_10</td>
<td></td>
</tr>
</tbody>
</table>

x-axis

Check if finish time 3 is before s_2
EXAMPLE: HEAP-BASED ALGORITHM

Check heap minimum
Check if finish time 3 is before \(s_2 \)
No. New colour!

Iteration i=2

| A_1 | 1 |
| A_2 | 2 |
| A_3 |
| A_4 |
| A_5 |
| A_6 |
| A_7 |
| A_8 |
| A_9 |
| A_{10} |

Min element: finish at time 3
Heap: finish at time 3
finish at time 7

x-axis
Example: Heap-Based Algorithm

<table>
<thead>
<tr>
<th>Iteration i=3</th>
<th>Check heap minimum</th>
<th>Check if finish time 3 is before s_3</th>
<th>No. New colour!</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{10}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Min element: finish at time 3

Heap: finish at time 3

Finish at time 7
EXAMPLE: HEAP-BASED ALGORITHM

Min element: finish at time 3
Heap finish at time 3
finish at time 7 finish at time 5

Iteration i=3 Check heap minimum Check if finish time 3 is before s_3 No. New colour!

<table>
<thead>
<tr>
<th>A_1</th>
<th>1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
</tr>
<tr>
<td>A_{10}</td>
<td></td>
</tr>
</tbody>
</table>

x-axis

Finish at time 3

Check if finish time 3 is before s_3
EXAMPLE: HEAP-BASED ALGORITHM

Min element: finish at time 3

Heap
finish at time 3
finish at time 7
finish at time 5

Iteration i=4
Check heap minimum
Check if finish time 3 is before s_4

Yes. Reuse colour, deleteMin and insert new finish time into heap!
Example: Heap-Based Algorithm

Iteration i=4: Check heap minimum. Check if finish time 3 is before s_4.

Yes. Reuse colour, deleteMin and insert new finish time into heap!

A_1	1
A_2	2
A_3	3
A_4	
A_5	
A_6	
A_7	
A_8	
A_9	
A_{10}	

Min element:
- Finish at time 5

Heap
- Finish at time 7
- Finish at time 5

x-axis
- 0 2 4 6 8 10 12 14 16 18 20
EXAMPLE: HEAP-BASED ALGORITHM

<table>
<thead>
<tr>
<th>A_1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_2</td>
<td>2</td>
</tr>
<tr>
<td>A_3</td>
<td>3</td>
</tr>
<tr>
<td>A_4</td>
<td></td>
</tr>
<tr>
<td>A_5</td>
<td></td>
</tr>
<tr>
<td>A_6</td>
<td></td>
</tr>
<tr>
<td>A_7</td>
<td></td>
</tr>
<tr>
<td>A_8</td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td></td>
</tr>
<tr>
<td>A_{10}</td>
<td></td>
</tr>
</tbody>
</table>

Iteration i=4
Check heap minimum
Check if finish time 3 is before s_4
Yes. Reuse colour, deleteMin and insert new finish time into heap!

Min element: finish at time 5
Heap: finish at time 9
finish at time 7
finish at time 5

x-axis
example: heap-based algorithm

iteration i=5
check heap minimum
check if finish time 5 is before s5
yes. reuse colour, deleteMin and insert new finish time into heap!

min element: finish at time 5

heap

A1	1	
A2	2	
A3	3	
A4		
A5		
A6		
A7		
A8		
A9		
A10		

x-axis

0 2 4 6 8 10 12 14 16 18 20
EXAMPLE: HEAP-BASED ALGORITHM

Min element: **finish at time 7**

Heap: finish at **time 9**

Iteration i=5

Check heap minimum

Check if finish time 5 is before s_5

Yes. **Reuse colour**, **deleteMin** and insert new finish time into heap!
EXAMPLE: HEAP-BASED ALGORITHM

- **Iteration i=5**
- **Check heap minimum**
- **Check if finish time 5 is before s₅**

Yes. **Reuse colour, deleteMin** and insert new finish time into heap!

<table>
<thead>
<tr>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
<th>A₅</th>
<th>A₆</th>
<th>A₇</th>
<th>A₈</th>
<th>A₉</th>
<th>A₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Min element:
- Finish at time 7

Heap:
- Finish at time 9
- Finish at time 7
- Finish at time 13

x-axis
0 2 4 6 8 10 12 14 16 18 20
EXAMPLE: HEAP-BASED ALGORITHM

Iteration $i=6$

Check heap minimum

Check if finish time 5 is before s_6

Yes. **Reuse** colour, **deleteMin** and insert new finish time into heap!

Min element: finish at time 7

Heap finish at time 9

finish at time 7 finish at time 13

Check heap minimum

Check if finish time 5 is before s_6

Yes. **Reuse** colour, **deleteMin** and insert new finish time into heap!
EXAMPLE: HEAP-BASED ALGORITHM

Iteration i=6
Check heap minimum
Check if finish time 5 is before s_6

Yes. **Reuse** colour, **deleteMin** and insert new finish time into heap!

A₁	1					
A₂	2					
A₃	3					
A₄						
A₅						
A₆						
A₇						
A₈						
A₉						
A₁₀						

Min element: finish at time 9

Heap

finish at time 9

finish at time 13

x-axis
EXAMPLE: HEAP-BASED ALGORITHM

Min element: finish at time 9

Heap finish at time 9

A1 finish at time 11

A2 finish at time 13

Iteration i=6
Check heap minimum
Check if finish time 5 is before s6
Yes. Reuse colour, deleteMin and insert new finish time into heap!

And so on, and so forth…
A modification is to use the colour of the interval having the earliest finishing time among the most recently chosen intervals of each colour. We can use a priority queue to keep track of these finishing times. Whenever we colour interval A_i with colour c, we insert (f_i, c) into the priority queue (here f_i is the "key").

When we want to want to colour the next interval A_i, we look at the minimum key f in the priority queue. If $f \leq s_i$, then we do a deleteMin operation, yielding the pair (f, c) and we use colour c for interval A_i. If $f > s_i$, we introduce a new colour.

Note that each interval is inserted once and deleted once from the priority queue. Therefore, the complexity of this approach is $O(n \log D)$. Since $D \leq n$, it is $O(n \log n)$.

Time complexity?

Time?

$O(\log D)$

$O(1)$

$O(\log D)$
Knapsack Problems

Problem 4.4

Knapsack

Instance: Profits $P = [p_1, \ldots, p_n]$; weights $W = [w_1, \ldots, w_n]$; and a capacity, M. These are all positive integers.

Feasible solution: An n-tuple $X = [x_1, \ldots, x_n]$ where $\sum_{i=1}^{n} w_i x_i < M$.

In the 0-1 Knapsack problem (often denoted just as Knapsack), we require that $x_i \in \{0, 1\}$, $1 \leq i \leq n$.

In the Rational Knapsack problem, we require that $x_i \in \mathbb{Q}$ and $0 \leq x_i \leq 1$, $1 \leq i \leq n$.

Find: A feasible solution X that maximizes $\sum_{i=1}^{n} p_i x_i$.

NP Hard. Probably requires exponential time to solve...

Can be solved in polynomial time by a greedy alg!
Possible Greedy Strategies for Knapsack Problems

Consider the items in decreasing order of profit (i.e., the local evaluation criterion is p_i).

Consider the items in increasing order of weight (i.e., the local evaluation criterion is w_i).

Consider the items in decreasing order of profit divided by weight (i.e., the local evaluation criterion is p_i/w_i).

Does one of these strategies yield a correct greedy algorithm for the Rational Knapsack problem?
Consider the following instance of the **Rational Knapsack Problem**:

<table>
<thead>
<tr>
<th>profits</th>
<th>50</th>
<th>90</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>weights</td>
<td>50</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>capacity</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If we consider the objects in order of decreasing profit, we obtain the solution \((4/5, 1, 0)\), yielding profit 130.

If we consider the objects in order of increasing weight, we obtain the solution \((1, 2/3, 1)\), yielding profit 130.

If we consider the objects in order of decreasing profit / weight ratio, then we obtain the solution \((3/5, 1, 1)\), yielding profit 140.

At least for this instance, the third strategy is better than the other two strategies.

It turns out strategy #3 is optimal...
Algorithm: GreedyRationalKnapsack($P, W : array; M : integer$)

sort the items so that $p_1/w_1 \geq \cdots \geq p_n/w_n$

$X \leftarrow [0, \ldots, 0]$ \hspace{2cm} No items are chosen

$i \leftarrow 1$

$CurW \leftarrow 0$ \hspace{2cm} Current weight of knapsack

while $(CurW < M)$ and $(i \leq n)$

\[\begin{align*}
\text{if } CurW + w_i & \leq M \\
\text{then } & \begin{cases}
 x_i \leftarrow 1 \\
 CurW \leftarrow CurW + w_i \\
 i \leftarrow i + 1
\end{cases} \\
\text{else } & \begin{cases}
 x_i \leftarrow (M - CurW)/w_i \\
 CurW := M
\end{cases}
\end{align*} \]

\hspace{2cm} Until full, or no more items

\hspace{2cm} If whole item fits

\hspace{2cm} Put it in the knapsack

\hspace{2cm} Else put in as much of the item as you can, to exactly fill the knapsack

\hspace{1cm} Either $X=(1,1,\ldots,1,0,\ldots,0)$ or $X=(1,1,\ldots,1,x_i,0,\ldots,0)$ where $x_i \in (0,1)$

\hspace{2cm} Time complexity?
Correctness Proof

For simplicity, assume that the profit / weight ratios are all distinct, so

\[\frac{p_1}{w_1} > \frac{p_2}{w_2} > \cdots > \frac{p_n}{w_n}. \]

Suppose the greedy solution is \(X = (x_1, \ldots, x_n) \) and the optimal solution is \(Y = (y_1, \ldots, y_n) \).

We will prove that \(X = Y \), i.e., \(x_j = y_j \) for \(j = 1, \ldots, n \). Therefore there is a unique optimal solution and it is equal to the greedy solution.

Suppose \(X \neq Y \). To obtain a contradiction

Pick the smallest integer \(j \) such that \(x_j \neq y_j \).

It is impossible that \(x_j < y_j \), so we have \(x_j > y_j \).

There exists an index \(k > j \) such that \(y_k > 0 \) (otherwise \(Y \) is not optimal).
Greedy solution X and Optimal solution Y differ at index j, where $y_j \neq x_j$. Fraction of item in knapsack.
Correctness Proof

For simplicity, assume that the profit / weight ratios are all distinct, so

\[\frac{p_1}{w_1} > \frac{p_2}{w_2} > \cdots > \frac{p_n}{w_n}. \]

Suppose the greedy solution is \(X = (x_1, \ldots, x_n) \) and the optimal solution is \(Y = (y_1, \ldots, y_n) \).

We will prove that \(X = Y \), i.e., \(x_j = y_j \) for \(j = 1, \ldots, n \). Therefore there is a unique optimal solution and it is equal to the greedy solution.

Suppose \(X \neq Y \).

Pick the smallest integer \(j \) such that \(x_j \neq y_j \).

It is impossible that \(x_j < y_j \), so we have \(x_j > y_j \).

There exists an index \(k > j \) such that \(y_k > 0 \) (otherwise \(Y \) is not optimal).
Can we have $y_j > x_j$?

No! Greedy would take more item j if it could...

$j = \text{first index where the solutions differ}$
Greedy solution X and Optimal solution Y differ at index j. Must have $y_j < x_j$ where $(x_j - y_j)$.
Correctness Proof

For simplicity, assume that the profit / weight ratios are all distinct, so

\[\frac{p_1}{w_1} > \frac{p_2}{w_2} > \cdots > \frac{p_n}{w_n}. \]

Suppose the greedy solution is \(X = (x_1, \ldots, x_n) \) and the optimal solution is \(Y = (y_1, \ldots, y_n) \).

We will prove that \(X = Y \), i.e., \(x_j = y_j \) for \(j = 1, \ldots, n \). Therefore there is a unique optimal solution and it is equal to the greedy solution.

Suppose \(X \neq Y \).

Pick the smallest integer \(j \) such that \(x_j \neq y_j \).

- It is impossible that \(x_j < y_j \), so we have \(x_j > y_j \).
- There exists an index \(k > j \) such that \(y_k > 0 \) (otherwise \(Y \) is not optimal).
Greedy solution X \hspace{0.5cm} Optimal solution Y \hspace{0.5cm} $j = \text{first index where the solutions differ}$

Can Y be all zeros after y_j? \hspace{0.5cm} No! It would be worth less than X \hspace{0.5cm} Must exist $k > j$ such that $y_k > 0$
Greedy solution X

Optimal solution Y

j = first index where the solutions differ

Must exist $k > j$ such that $y_k > 0$

But, by our sort order, item j is worth more (per unit of weight) than item k!

Remove some of item k and replace it with some of item j?
\[
\begin{align*}
\text{Let } \delta &= \min\{w_j(x_j - x_i), w_k y_k\} \\
\text{Max weight we can add of this} &= w_j(x_j - y_j) \\
\text{Max weight we can remove of this} &= w_k y_k \\
\delta &= \text{how much weight we will move from } k \to j. \\
\text{Observe that } \delta &> 0 \\
j &= \text{first index where the solutions differ}
\end{align*}
\]
Greedy solution X

Optimal solution Y

fraction of item in knapsack

$j = \text{first index where the solutions differ}$

Modified optimal solution Y'

To move δ weight from item j to item k...

What fraction of item j are we removing?

What fraction of item k are we adding?

What fraction of item j are we adding?

$y_j' = y_j + \frac{\delta}{w_j}$

$y_k' = y_k - \frac{\delta}{w_k}$

$\frac{\delta}{w_k}$
The idea is to show that

\[Y' \text{ is feasible, and } \text{profit}(Y') > \text{profit}(Y). \]

This contradicts the optimality of \(Y \) and proves that \(X = Y \).
PROOF CONTINUED

• To show Y' is **feasible**, we show $y'_k \geq 0, y'_j \leq 1$ and $\text{weight}(Y') \leq M$

First, we have $y'_k = y_k - \frac{\delta}{w_k} \geq y_k - \frac{w_k y_k}{w_k} = 0$

Second, we have $y'_j = y_j + \frac{\delta}{w_j} \leq y_j + \frac{w_j (x_j - y_j)}{w_j} = x_j \leq 1$

Third, $\text{weight}(Y') = \text{weight}(Y) + \frac{\delta}{w_j} w_j - \frac{\delta}{w_k} w_k = \text{weight}(Y) \leq M$

Since $\delta = \min\{w_j(x_j - x_i), w_k y_k\}$
PROOF CONTINUED

• Finally we compute \(\text{profit}(Y') \)

• \(\text{profit}(Y') = \text{profit}(Y) + \frac{\delta}{w_j} p_j - \frac{\delta}{w_k} p_k \)

• \(= \text{profit}(Y) + \delta \left(\frac{p_j}{w_j} - \frac{p_k}{w_k} \right) \)

• Since \(j \) is before \(k \), and we consider items with more profit per unit weight first, we have \(\frac{p_j}{w_j} > \frac{p_k}{w_k} \).

• So, \(\delta \left(\frac{p_j}{w_j} - \frac{p_k}{w_k} \right) > 0 \), so \(\text{profit}(Y') > \text{profit}(Y) \).