CS341: Algorithms

Lecture 00: Introduction

Yao-Liang Yu

School of Computer Science
University of Waterloo

January 3, 2017
Plan for Today

1 Course Logistics

2 Course Review

3 First Examples
Plan

1 Course Logistics

2 Course Review

3 First Examples
Course Information

- **Sections & Instructors**
 - Lec 1 & 3: Semih, TR 2:30 - 5:20, MC 2034
 - Lec 2 & 4: Doug, TR 10:00 - 11:20, RCH 207
 - Lec 5: Yao, TR 8:30 - 9:50, MC 4040

- **Scheduled office hours**
 - Semih, ??
 - Doug, R 1:30 - 2:30
 - Yao, T 10:00 - 11:00, DC 3206 or by email appointment
 yaoliang.yu@uwaterloo.ca
Resources

● Website (still under construction)
 https://www.student.cs.uwaterloo.ca/~cs341/
 For syllabus, calendar, policies, etc.

● Piazza (will be invited)
 piazza.com/uwaterloo.ca/winter2017/cs341
 For announcements, questions, discussions, etc.

● Learn https://learn.uwaterloo.ca
 For slides, assignments, solutions, grades, etc.

● Textbook: Introduction to Algorithms (3rd), by Cormen, Leiserson, Rivest and Stein, MIT press, available in bookstore

● TAs: Aayush, Dimitrios, Eric, Jian, Jose, Shayan, Shikha Y-L. Yu (UW)
Please silence your cell phone and other electronic devices before class.

Questions encouraged, but please refrain from talking in class.

Use your laptop only for course related materials.

Bottom line: Do not disturb others.
Coursework

<table>
<thead>
<tr>
<th></th>
<th>out date</th>
<th>due date</th>
<th>percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Jan 6</td>
<td>Jan 20</td>
<td>5%</td>
</tr>
<tr>
<td>A2</td>
<td>Jan 20</td>
<td>Feb 3</td>
<td>5%</td>
</tr>
<tr>
<td>A3</td>
<td>Feb 3</td>
<td>Feb 17</td>
<td>5%</td>
</tr>
<tr>
<td>A4</td>
<td>Feb 17</td>
<td>Mar 10</td>
<td>5%</td>
</tr>
<tr>
<td>A5</td>
<td>Mar 10</td>
<td>Mar 31</td>
<td>5%</td>
</tr>
</tbody>
</table>

| Midterm | STC 1012 & AHS 1689 | Mar 2, 7:00 – 8:50pm | 25% |

| Final | ?? | ?? | 50% |

- All 5 sections have the same coursework and grading
- **No late policy**
- Emergencies considered if formal proof provided
Academic Integrity

- Good discussion online:

 http://www.math.uwaterloo.ca/navigation/Current/cheating_policy.shtml

- Ignorance is no excuse!

- Do your work on your own.

- Discussion is fine or even encouraged, but no sharing of text or code.

- Common mistakes

 ▶ excessive collaboration with other students
 ▶ use solutions from other sources

- Possible penalties

 ▶ first offense: 0% for that assignment, -5% on final grade
 ▶ second offense: expulsion is possible
Plan

1. Course Logistics
2. Course Review
3. First Examples
Prerequisites

- CS 240: standard data structures
- Mathematical maturity
 - proof by induction
 - proof by contradiction
- Preferably, some programming experience
Why is CS 341 important for you?

- Heart of CS
- Wide applications
- Building stones
- Intellectual challenge
- Job hunting
- etc.

must do-well course for CS students!
What is an algorithm?

"An algorithm is a finite, definite, effective procedure, with some input and some output."
— Donald Knuth

A procedure that efficiently computes an “answer” to a problem.
Algorithmic problems

- Sorting, e.g. rank the students/websites by their GPA/relevance
- Searching, e.g. retrieve a patient’s record, if exists in database
- Strings, e.g. ctrl/cmd + F
- Graphs, e.g. shortest trip from Waterloo to Toronto
- Geometry, e.g. closest pair among n points on the plane
- Numerical, e.g. approximate $\sqrt{2}$
Algorithm design techniques

- Brute-force
- Divide and conquer
- Greedy
- Dynamic Programming
- Reduction
- Heuristic Search (not in this course)
- Mathematical Programming (not in this course)

Simplicity is an appeal.
Type of algorithms

- serial vs. parallel
- exact vs. approximate
- deterministic vs. probabilistic
- offline vs. online
- etc.

In this course, we deal with serial, exact, deterministic and offline algorithms (most of the time).
Algorithm analysis

- Is your algorithm correct?
 “Yes. I ran it xx times and it always output correctly.”

- Is your algorithm efficient, in time, space, communication, etc.?
 “Yes. I ran it...”

- Is there an “optimal” algorithm?
 No in general. For specific measures yes sometimes.

- Finding an optimal (in certain sense) algorithm is a great achievement!

 We focus on formal proofs.
Efficiency: zoomed in

- Most of time we analyze running time complexity of algorithm
- Worst-case vs. average case

\[
\max_{I \in \mathcal{I}(P)} T(A, I) \quad \text{vs.} \quad \frac{1}{|\mathcal{I}(P)|} \sum_{I \in \mathcal{I}(P)} T(A, I)
\]

- Upper bound vs. lower bound

Bear in mind that sometimes analysis might not be tight.

- A hierarchy of time complexity
 - linear time \(O(n)\), polynomial time \(O(n^k)\) | exponential time \(O(2^n)\)

- Undecidable problems that cannot be solved by any algorithm...
Plan

1. Course Logistics
2. Course Review
3. First Examples
Sorting

Problem

Sorting: same array of integers in increasing order $\forall i, A[i] \leq A[i+1]$

Algorithm 1: SelectionSort (array A of size n)

1. for $i = 1$ to n do
2. $minIndex = i$
3. for $j = i+1$ to n do
5. $minIndex = j$
7. return A
Example
Correctness of SelectionSort

On the i-th iteration, SelectionSort selects the i-th smallest element $A[\text{minIndex}]$ and swaps it with $A[i]$.
Efficiency of SelectionSort

Algorithm 1: SelectionSort (array A of size n)

1. for $i = 1$ to n do
2. $\text{minIndex} = i$
3. for $j = i + 1$ to n do
4. if $A[j] < A[\text{minIndex}]$ then
5. $\text{minIndex} = j$
6. $A[i] \leftrightarrow A[\text{minIndex}]$ // in-place swap
7. return A

- Outer loop: n iterations
- Inner loop: $n - i$ iterations for the i-th outer iteration
- In total: $\sum_{i=1}^{n} (n - i) = n^2 - \frac{n(n+1)}{2}$ comparisons, n swaps
- Complexity $O(n^2)$
How to sort in decreasing order?

reduce to something familiar
negate, sort increasingly, negate
or modify SelectionSort directly

Algorithm 2:

```
SelectionSort (array A of size n)
1 for i = 1 to n do
2 maxIndex = i
3 for j = i + 1 to n do
4 if A[j] > A[maxIndex] then
5 maxIndex = j
7 return A
```
How to sort in decreasing order?

- reduce to something familiar

 negate, sort increasingly, negate

- or modify SelectionSort directly

Algorithm 3: SelectionSort (array A of size n)

1. for $i = 1$ to n do
2. $\text{maxIndex} = i$
3. for $j = i + 1$ to n do
4. if $A[j] > A[\text{maxIndex}]$ then
5. $\text{maxIndex} = j$
6. end if
7. end for
8. $A[i] \leftrightarrow A[\text{maxIndex}]$ // in-place swap
9. end for
10. return A
Nice properties of SelectionSort

- in-place: no extra memory is needed
Nice properties of SelectionSort

- in-place: no extra memory is needed

 All right, we do need $O(1)$ extra memory...

Nice properties of **SelectionSort**

- **in-place**: no extra memory is needed

 \textit{All right, we do need }O(1)\textit{ extra memory...}

- **stable**: if for \(i < j\), \(A[i] = A[j]\) then after **SelectionSort** \(A[i]\) still proceeds \(A[j]\)

 \textit{Suppose students are sorted alphabetically, then after **SelectionSort** by GPA, students with the same GPA are still alphabetically sorted.}