CS341: Algorithms
Lecture 09: Greedy Algorithm III

Yao-Liang Yu

School of Computer Science
University of Waterloo

Feb 02, 2017
Plan for Today

1 Recap

2 Stable Marriage
Plan

1. Recap

2. Stable Marriage
Interval Coloring

Input: A set of n intervals $\{[s_i, f_i]\}$ with start time s_i and finish time f_i
Output: Least number of colors such that overlapping intervals are colored differently

Non-optimal greedy algorithm:
- select a maximum number of pairwise disjoint intervals
- color them with a new color
- delete them
- repeat
A lower bound

Definition (Depth). Maximum number of intervals that pass same point.

Theorem. We need at least as many colors as the depth.

Corollary. If an algorithm uses \(d\) colors, then it is optimal.
Algorithm 1: greedyIntervalColor(\mathcal{A})

1. $\mathcal{A} \leftarrow \text{sort}(\mathcal{A})$ // by starting time s_i
2. $d \leftarrow 1$
3. $\text{color}[1] \leftarrow 1$
4. $\text{finish}[1] \leftarrow f_1$
5. for $i = 2, \ldots, n$ do
6. $\text{neednewcolor} \leftarrow \text{true}$
7. $c \leftarrow 1$
8. while $c \leq d$ do
9. if $\text{finish}[c] \leq s_i$ then
10. $\text{color}[i] \leftarrow c$
11. $\text{finish}[c] \leftarrow f_i$
12. $\text{neednewcolor} \leftarrow \text{false}$
13. break
14. else
15. $c++$
16. end if
17. if neednewcolor then
18. $d++$
19. $\text{color}[i] \leftarrow d$
20. $\text{finish}[d] \leftarrow f_i$
21. end if
22. return (d, color)
Set cover

Set Cover

Input: A set $U = \{1, \ldots, n\}$ and a collection of subsets
$\mathcal{F} = \{A_i \subseteq U : i = 1, \ldots, m\}$
Output: “Smallest” $C \subseteq \mathcal{F}$ such that $\bigcup_{C \in C} C = U$
A greedy approximation algorithm

Algorithm 2: greedySetCover(U, \(\mathcal{F} \))

1. \(C \leftarrow \emptyset \)
2. **while** \(U \neq \emptyset \) **do**
3. \[\text{choose } A \in \mathcal{F} \text{ that maximizes } |A \cap U| \]
4. \(U \leftarrow U \setminus A \)
5. \(C \leftarrow C \cup \{A\} \)
6. **return** \((C) \)

greedy \(\leq \) **opt** \(\log(n) \)
choose $n = 2^{k+1} - 2$

cannot be improved unless $P = NP$ (Dinur & Steurer, 2014)

weighted version, follow the textbook

linear-time implementation (Bar-Yehuda & Even, 1981)
Knapsack

Input: Profits \(P = [p_1, \ldots, p_n] \); weights \(W = [w_1, \ldots, w_n] \); capacity \(C \).

Feasible solution: \(X = [x_1, \ldots, x_n] \) such that \(\sum_i w_i x_i \leq C \), for all \(i \), \(x_i \in \{0, 1\} \) or \(x_i \in \mathbb{N} \) or more relaxedly \(x_i \in [0, 1] \)

Output: A feasible solution \(X \) that maximizes \(\sum_i p_i x_i \).

Possible greedy choices:

- choose the items in decreasing order of profit
- choose the items in increasing order of weight
- choose the items in decreasing order of profit per weight
Algorithm 3: greedyRelaxedKnapsack\((P, W, C)\)

1. \((P, W) \leftarrow \text{sort}(P, W)\) \hspace{1cm} \text{// sort by } p_i/w_i
2. \(i \leftarrow 1\)
3. \(\text{curW} \leftarrow 0\) \hspace{1cm} \text{// current total weight}
4. \textbf{while } \text{curW} < C \text{ and } i \leq n \text{ do}
5. \hspace{1cm} x_i \leftarrow \min\{1, (C - \text{curW})/w_i\}
6. \hspace{1cm} \text{curW} += x_i w_i
7. \hspace{1cm} i++
8. \textbf{return } X

- Clearly, time complexity \(O(n \log n)\)
What if $x_i \in \{0, 1\}$

Would straightforward modification of our greedy algorithm work?

No. In fact, this is an **NP-hard** problem.

Pseudo-polynomial time algorithm using dynamic programming.
Greedy is not too bad

W.l.o.g., assume \(w_i \leq C \) for all \(i \).

- sort by \(p_i/w_i \) decreasingly
- find \(k \) such that \(\sum_{i=1}^{k} w_i \leq C < \sum_{i=1}^{k+1} w_i \)
- return \(\max\{\sum_{i=1}^{k} p_i, p_{k+1}\} \)

Claim: \(\sum_{i=1}^{k} p_i \leq \text{opt} \leq \text{opt}_{\text{relaxed}} < \sum_{i=1}^{k+1} p_i \)

Hence greedy \(\geq \) \(\text{opt}/2 \).

Example: \(P = [2, C], W = [1, C] \)
Plan

1 Recap

2 Stable Marriage
Stable Marriage Problem

Stable Marriage

Input: A set of men $M = [m_1, \ldots, m_n]$ and a set of women $\mathcal{W} = [w_1, \ldots, w_n]$

Each man has a preference ranking (e.g. permutation) of the n women, and vice versa

Output: A (perfect) matching of the men with women so that no pair (m_i, w_j) who are not married to each other but prefer each other to their partners. Such matchings are called stable matching.

- does there exist a stable matching?
- is a stable matching unique?
- how to efficiently find a stable matching?
Algorithm 4: Gale-Shapley \((M, W, \text{pref})\)

1. \(\text{Match} \leftarrow \emptyset\)
2. \textbf{while} \(\exists\) a free man \(m\) \textbf{do}
3. \hspace{1em} let \(w\) be the highest ranked woman in \(m\)’s preference to whom \(m\) has not yet proposed \hspace{1em} // break ties arbitrarily
4. \hspace{1em} \textbf{if} \(w\) is free \textbf{then}
5. \hspace{2em} \text{Match} \leftarrow \text{Match} \cup \{m, w\}
6. \hspace{1em} \textbf{else}
7. \hspace{2em} suppose \((m', w) \in \text{Match}\)
8. \hspace{3em} \textbf{if} \(w\) prefers \(m\) to \(m'\) \textbf{then}
9. \hspace{4em} \text{Match} \leftarrow \text{Match} \setminus \{m', w\} \cup \{m, w\}
10. \hspace{4em} \text{\(m'\) becomes free}
11. \hspace{3em} \textbf{else}
12. \hspace{4em} \text{\(m\) remains free}
13. \textbf{return} \text{Match}
Analysis

- Each woman remains engaged from her first received proposal, and her partner gets better and better (in terms of her preference list).
- Each man proposes to a worse and worse partner (in terms of his preference list).
- Each man proposes at most n times, each woman receives at most n proposals.
- Thus Gale-Shapley terminates after at most $n(n-1) + 1$ iterations.
- A free man can always propose.
- Gale-Shapley returns a stable perfect matching $Match$:
 - If not, $\exists (m, w), (m', w') \in Match$ but $w' >_m w$ and $m >_{w'} m'$
 - m proposed to w' before but was eventually rejected.
 - Thus w' was engaged to someone better than m, contradiction.
Why are men proposing?

If each man’s top partner is different, then Gale-Shapley will make every man happy, irrespective of the women’s preferences!

In fact, this is always the case for Gale-Shapley...

For each man m, define

\[
\text{valid}(m) := \{w : (m, w) \text{ appears in some stable perfect matching}\}
\]

\[
\text{best}(m) := \{w : w \in \text{valid}(m) \text{ has highest ranking in } m \text{’s preference}\}
\]

\[
\text{Match}^* := \{ (m, \text{best}(m)) \}
\]

Gale-Shapley always outputs Match^*, and $\text{Match}^* = \{ (\text{worst}(w), w) \}$!
Proof

- suppose exist \((\tilde{m}, \tilde{w}) \in Match_{GS}\) and \(\tilde{w} \neq \text{best}(\tilde{m})\)
- recall each man proposes by decreasing order of preference
- some man, say \(m\), was rejected by some \(w \in \text{valid}(m)\)
- when this first happens in GS, \(m\) is rejected by \(w = \text{best}(m)\)
- at the time of this rejection, we infer \(w\) is engaged to \(m'\) (it is possible that \(w\) may reject \(m'\) as well later)
- \(\exists\) a stable \(Match'\) and \(w'\) such that \((m, w), (m', w') \in Match'\)
- when run Gale-Shapley, \(m'\) was not rejected by any \(\text{valid}(m')\) when \(m\) was rejected by \(w\) (since \(m\) is the first poor guy)
- \(m'\) proposes in decreasing order of preference
- \(w' \in \text{valid}(m')\), hence \(w >_{m'} w'\)
- contradiction to the stability of \(Match'\)
Proof cont’

- Suppose \((m, w) \in Match^* \) and \(m \neq \text{worst}(w)\)
- \(\exists\) stable matching \(Match' \ni (m', w)\) and \(m >_w m'\)
- Say \((m, w') \in Match'\) (clearly \(w' \neq w\) since \(w\) is married to \(m'\))
- By previous result \(w = \text{best}(m)\) hence \(w >_m w'\)
- Contradiction to the stability of \(Match'\)
similar algorithm long used for matching medical students with residency hospitals

until 2000s hospital proposed, now you know why :)

about 10 years ago students started proposing

ancient China: through an intermediate match-maker

Shapley and Roth shared Nobel prize in 2012 (Gale died in 2008)

can you benefit by being dishonest or coordinated? (Dubins & Freedman, 1981)