CS341: Algorithms
Lecture 22: Intractability IV

Yao-Liang Yu
School of Computer Science
University of Waterloo

Mar 28, 2017
SUBSETSUM

Instance: A list of positive integers $S = [s_1, \ldots, s_n]$ and a target sum integer T.

Question: Does there exist a subset $J \subseteq \{1, \ldots, n\}$ such that $\sum_{j \in J} s_j = T$?

Theorem. SUBSETSUM $\in \text{NPC}$.

Proof. Clearly SUBSETSUM $\in \text{NP}$.

Next, we show VERTEXCOVER \leq_P SUBSETSUM.

Take a graph G with nodes $V = \{v_1, \ldots, v_n\}$ and edges $E = \{e_1, \ldots, e_m\}$, and an integer $1 \leq k \leq n$. Let

$$l_{ij} = \begin{cases} 1, & v_i \in e_j \\ 0, & \text{otherwise} \end{cases}$$
Proof cont’

<table>
<thead>
<tr>
<th></th>
<th>(e_1)</th>
<th>(e_2)</th>
<th>(\cdots)</th>
<th>(e_{m-1})</th>
<th>(e_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu_1)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(\cdots)</td>
<td>0</td>
</tr>
<tr>
<td>(\nu_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(\cdots)</td>
<td>0</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(\nu_n)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(\cdots)</td>
<td>1</td>
</tr>
<tr>
<td>(e_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\cdots)</td>
<td>0</td>
</tr>
<tr>
<td>(e_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\cdots)</td>
<td>1</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(e_{m-1})</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(\cdots)</td>
<td>0</td>
</tr>
<tr>
<td>(e_m)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(\cdots)</td>
<td>0</td>
</tr>
</tbody>
</table>

| | \(k\) | 2 | 2 | \(\cdots\) | 2 | 2 |

Note. Can add redundant nodes to a vertex cover (to increase its size).

\[
T = k \cdot 10^m + \sum_{j=0}^{m-1} 2 \cdot 10^j.
\]
A dynamic programming solution

Let $B(i, t)$ be true if we can find a subset of the first i numbers whose sum is t, and false otherwise.

Recursion: $B(i, t) = B(i - 1, t) \lor B(i - 1, t - a_i)$.

Base case: $B(1, t) = 1$ iff $t = a_1$.

The table B has size $\Theta(nT)$ hence the running time $O(nT)$.

This is polytime iff $T = \text{poly}(n)$.

Implication: For any $\Pi \in \text{NPC}$, if $\Pi \leq_p \text{SUBSETSUM}$, then we can we say about T in the reduction?

Implication: If $\text{SUBSETSUM} \leq_p \Pi$ but $T = \text{poly}(n)$ in the reduction, can we conclude $\Pi \in \text{NP-hard}$?
Component Grouping

Component Grouping (CG)

Instance: A disconnected graph G and a positive integer k.

Question: Does there exist a subset of the connected components of G whose union has size exactly k?

Theorem. $\text{CG} \in \text{NPC}$.

Proof. Clearly $\text{CG} \in \text{NP}$. We show $\text{SUBSETSUM} \leq_P \text{CG}$.

Take an instance of SUBSETSUM. Construct disjoint paths P_i that have length s_i, respectively. Easy to see SUBSETSUM is true iff CG is true (with $k = T$).

Something is very wrong here!!!

In fact, $\text{CG} \in \text{P}$. Why?

Y-L. Yu (UW)
Intractability IV: Numeric
Mar 28, 2017 5 / 8
Component Grouping

Instance: A disconnected graph G and a positive integer k.

Question: Does there exist a subset of the connected components of G whose union has size exactly k?

Theorem. $\text{CG} \in \text{NPC}$.

Proof. Clearly $\text{CG} \in \text{NP}$. We show $\text{SUBSETSUM} \leq_P \text{CG}$.

Take an instance of SUBSETSUM. Construct disjoint paths P_i that have length s_i, respectively. Easy to see SUBSETSUM is true iff CG is true (with $k = T$).

Something is very wrong here!!!
Component Grouping

Instance: A disconnected graph G and a positive integer k.

Question: Does there exist a subset of the connected components of G whose union has size exactly k?

Theorem. $\text{CG} \in \text{NPC}$.

Proof. Clearly $\text{CG} \in \text{NP}$. We show $\text{SUBSETSUM} \leq_{P} \text{CG}$.

Take an instance of SUBSETSUM. Construct disjoint paths P_i that have length s_i, respectively. Easy to see SUBSETSUM is true iff CG is true (with $k = T$).

Something is very wrong here!!!

In fact, $\text{CG} \in \text{P}$. Why?
Knapsack

KNAPSACK

Input: Profits $P = [p_1, \ldots, p_n]$; weights $W = [w_1, \ldots, w_n]$; capacity C.

Feasible solution: $X = [x_1, \ldots, x_n]$ such that $\sum_i w_i x_i \leq C$, for all i, $x_i \in \{0, 1\}$.

Output: A feasible solution X that maximizes $\sum_i p_i x_i$.

Optimization to Decision.

Theorem. KNAPSACK \in NPC.

Proof. Clearly KNAPSACK \in NP.

We show SUBSETSUM \leq_P KNAPSACK.

$P = W = S$, $C = T = k$.
Partition

PARTITION

Instance: A list $Q = [q_1, \ldots, q_m]$ of positive integers.

Question: Can we partition Q into two subsets whose sum equal?

Theorem. $\textsc{Partition} \in \text{NPC}$.

Proof. Clearly $\textsc{Partition} \in \text{NP}$. We show $\textsc{SubsetSum} \leq_P \textsc{Partition}$.

Take an instance of $\textsc{SubsetSum}$ and let

$$Q = [s_1, \ldots, s_n, 2 \sum_i s_i - T, \sum_i s_i + T].$$

Key: If such partition exists, then $2 \sum_i s_i - T$ and $\sum_i s_i + T$ cannot be in the same subset.