Time Hierarchy Theorem

Theorem (Hartmanis-Stearns’65). For time constructible functions, if

\[f(n) \log f(n) = o(g(n)) \]

then exist problems in \(\text{DTIME}(g(n)) \) but not in \(\text{DTIME}(f(n)) \).

Theorem (Cook’72). For time constructible functions \(f \) and \(g \), if

\[f(n + 1) = o(g(n)) \]

then exist problems in \(\text{NTIME}(g(n)) \) but not in \(\text{NTIME}(f(n)) \).

It is still open if \(\text{NP} \not\subset \text{DEXP} \).
A decision problem Π is undecidable if there is no algorithm that can solve Π in finite time.

Halting

Instance: A computer program A and an input x for A.

Question: Does $A(x)$ halt in finite time?

Key. A computer program \simeq a string x.

The answer is clearly "yes" or "no."

Can we always tell (decide) in finite time?
The Diagonalization Technique

The monster program:
\[\forall A, \ Halt(M, A) = \neg Halt(A, A). \]

<table>
<thead>
<tr>
<th>program</th>
<th>input</th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(\ldots)</th>
<th>(M)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>(\neg A_1(A_1))</td>
<td>(\neg A_2(A_2))</td>
<td>(\neg A_3(A_3))</td>
<td>(\ldots)</td>
<td>(\neg M(M))</td>
<td>(\ldots)</td>
<td></td>
</tr>
<tr>
<td>(A_2)</td>
<td>(\neg A_1(A_1))</td>
<td>(\neg A_2(A_2))</td>
<td>(\ldots)</td>
<td>(\neg M(M))</td>
<td>(\ldots)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_3)</td>
<td>(\neg A_1(A_1))</td>
<td>(\neg A_2(A_2))</td>
<td>(\ldots)</td>
<td>(\neg M(M))</td>
<td>(\ldots)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>(\neg A_1(A_1))</td>
<td>(\neg A_2(A_2))</td>
<td>(\ldots)</td>
<td>(\neg M(M))</td>
<td>(\ldots)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is \(Halt(M, M) \)?

Existential but hardly “practical” proof.
Reductions

Halt-All

Instance: A computer program A.

Question: Does A halt in finite time on all inputs?

Theorem. Halting \leq Halt-All.

Proof. Take an instance (A, x) of Halting. Define an instance of Halt-All as the program B which simulates $A(x)$.