February 12, 2018

This assignment introduces complex locks in µC++ and continues examining synchronization and mutual exclusion. Use it to become familiar with these new facilities, and ensure you use these concepts in your assignment solution. (Tasks may not have public members except for constructors and/or destructors.)

1. (a) Consider the following situation involving a tour group of V tourists. The tourists arrive at the Louvre museum for a tour. However, a tour can only be composed of G people at a time, otherwise the tourists cannot hear what the guide is saying. As well, there are 3 kinds of tours available at the Louvre: pictures, statues and gift shop. Therefore, each group of G tourists must vote among themselves to select the kind of tour to take. Voting is a ranked ballot, where each tourist ranks the 3 tours with values 0, 1, 2, where 2 is the highest rank. Tallying the votes sums the ranks for each kind of tour and selects the highest ranking. If tie votes occur among rankings, prioritize the results by gift shop, pictures, and then statues. During voting, tasks block until all votes are cast, i.e., assume a secret ballot. Once a decision is made, the tourists in that group proceed on the specified tour.

To simplify the problem, the program only has to handle cases where the number of tourists is evenly divisible by the tour-group size so all groups contain the same number of tourists.

Implement a vote-tallier for G-way voting as a class using only:

- an uOwnerLock and uCondLocks to provide mutual exclusion and synchronization (eliminate busy waiting using a signaller flag and extra condition lock).
- uSemaphores used as binary rather than counting to provide mutual exclusion and synchronization.
- a single uBarrier to provide mutual exclusion and synchronization. Note, a uBarrier has implicit mutual exclusion so it is only necessary to manage the synchronization. As well, only the basic aspects of the uBarrier are needed to solve this problem.

No busy waiting is allowed and barging tasks can spoil an election and must be prevented. Figure 1 shows the different forms for each µC++ vote-tallier implementation (you may add only a public destructor and private members), where the preprocessor is used to conditionally compile a specific interface. This form of header file removes duplicate code. When the vote-tallier is created, it is passed the number of voters, size of a voting group, and a printer for printing state transitions. There is only one vote-tallying object created for all of the voters, who share a reference to it. Each tourist task calls the vote method with their id and a ranked vote, indicating their desire for a picture, statue, or gift-shop tour. The vote routine does not return until group votes are cast; after which, the majority result of the voting (Picture, Statue or GiftShop) is returned to each voter. The groups are formed based on voter arrival; e.g., for a group of 3, if voters 2, 5, 8 cast their votes first, they form the first group, etc. Hence, all voting is serialized. An appropriate preprocessor variable is defined on the compilation command using the following syntax:

```
u++ -DSEM -c TallyVotesSEM.cc
```

When a tourist finishes taking tours and leaves the Louvre Museum, it calls done.

The interface for the voting task is (you may add only a public destructor and private members):
#if defined(MC) // mutex/condition solution
// includes for this kind of vote-tallier
class TallyVotes {
 // private declarations for this kind of vote-tallier
#endif
#endif
#endif
#endif
#endif
}

Figure 1: Tally Voter Interfaces

The task main of a voting task performs the following
votes times:
* yield a random number of times, between 0 and 19 inclusive, so all tasks do not start simultaneously
* print start message
* yield a random number of times, between 0 and 4 inclusive
* vote
* yield a random number of times, between 0 and 4 inclusive
* print finish message
Casting a vote is accomplished by calling cast. Yielding is accomplished by calling yield(times) to give up a task’s CPU time-slice a number of times.

All output from the program is generated by calls to a printer, excluding error messages. The interface for the printer is (you may add only a public destructor and private members).

(Monitors are discussed shortly, and are classes with public methods that implicitly provide mutual exclusion.) The printer attempts to reduce output by storing information for each voter until one of the stored
elements is overwritten. When information is going to be overwritten, all the stored information is flushed and storing starts again. Output must look like that in Figure 2.

Each column is assigned to a voter with an appropriate title, “V_i”, and a column entry indicates its current status:

<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>starting</td>
</tr>
<tr>
<td>V_p,s,g</td>
<td>voting with ballot containing 3 rankings</td>
</tr>
<tr>
<td>B_n</td>
<td>blocking during voting, n voters waiting (including self)</td>
</tr>
<tr>
<td>U_n</td>
<td>unblocking after group reached, n voters still waiting (not including self)</td>
</tr>
<tr>
<td>b</td>
<td>barging into voter and having to wait for signalled tasks</td>
</tr>
<tr>
<td>C</td>
<td>group is complete and voting result is computed</td>
</tr>
<tr>
<td>F_t</td>
<td>finished voting and selected tour is t (p/s/g)</td>
</tr>
<tr>
<td>X</td>
<td>failed to form a group</td>
</tr>
</tbody>
</table>

Information is buffered until a column is overwritten for a particular entry, which causes the buffered data to be flushed. If there is no new stored information for a column since the last buffer flush, an empty column is printed. After a task has finished, no further output appears in that column. All output spacing can be accomplished using the standard 8-space tabbing. Buffer any information necessary for printing in its internal representation; **do not build and store strings of text for output.** Calls to perform printing may be performed from the vote-tallier and/or a voter task (you decide where to print).

For example, in line 4 of the left-hand example of Figure 2, V0 has the value “S” in its buffer slot, V1 is empty, and V2 has value “S”. When V0 attempts to print “V 0,2,1”, which overwrites its current buffer value of “S”, the buffer must be flushed generating line 4. V0’s new value of “V 0,2,1” is then inserted into its buffer slot. When V0 attempts to print “C”, which overwrites its current buffer value of “V 0,2,1”, the buffer must be flushed generating line 5, and no other values are printed on the line because the print is consecutive (i.e., no intervening call from another object). Then V0 inserts value “C” and V2 inserts value “V 0,2,1” into the buffer. When V2 attempts to print “C”, which overwrites its current buffer value
of “V 0,2,1”, the buffer must be flushed generating line 6, and so on. Note, a group size of 1 means a voter never has to block/unblock.

Interestingly, a vote can fail to establish a quorum (group) even when the number of voters is a multiple of the group size. For example, one voter can execute fast while another executes slow, so the fast voter finishes its voting early and terminates. As a result, the slow voter can encounter a situation where there are insufficient voters to form a group. TallyVotes detects a failure situation when a voter calls done and the number of remaining voters is less than the group size. At this point, any new calls to vote immediately return Failed, and any waiting voters are unblocked and return Failed. For the barrier, a voter calling done in the failure case, must block on the barrier to force waiting voters to unblock.

For example, in the right-hand example of Figure 2, there are 6 voters, 3 voters in a group, and each voter votes twice. Voters V3 and V4 are delayed (e.g., they went to Tom’s for a coffee and donut). By looking at the F codes, V0, V1, V5 vote together, V0, V2 V5 vote together, and V1, V2, V4 vote together. Hence, V0, V1, V2, and V5 have voted twice and finished. V3 needs to vote twice and V4 needs to vote again. However, there are now insufficient voters to form a group, so both V3 and V4 fail with X.

The executable program is named vote and has the following shell interface:

```
vote [ voters | 'x' ] [ group | 'x' ] [ votes | 'x' ] [ seed | 'x' ] ]
```

voters is the size of a tour (> 0), i.e., the number of voters (tasks) to be started (multiple of group). If x or no value for voters is specified, assume 6.

group is the size of a tour group (> 0). If x or no value for group is specified, assume 3.

votes is the number of tours (> 0) each voter takes of the museum. If x or no value for votes is specified, assume 1.

seed is the starting seed for the random-number generator (> 0). If x or no value for seed is specified, initialize the random number generator with an arbitrary seed value (e.g., getpid() or time), so each run of the program generates different output.

Use the monitor MPRNG to safely generate random values (monitors will be discussed shortly). Note, because of the non-deterministic execution of concurrent programs, multiple runs with a common seed may not generate the same output. Nevertheless, short runs are often the same so the seed can be useful for testing. Check all command arguments for correct form (integers) and range; print an appropriate usage message and terminate the program if a value is missing or invalid.

(b) i. Compare the performance among the three kinds of locks by eliding all output (not even calls to the printer) and doing the following:

- Time the execution using the time command:

  ```
  $ /usr/bin/time -f "%Uu %Ss %Er" vote 100 10 100000 1003
  10.17u 0.04s 0:10.19r
  ```

 (Output from time differs depending on your shell, but all provide user, system and real time.)

 Compare the **user** (10.17u) and **real** (0:10.19r) time among runs, which is the CPU time consumed solely by the execution of user code (versus system) and the total time from the start to the end of the program.

- Adjust the number of votes to get real time in the range 10 to 20 seconds. (Timing results below 1 second are inaccurate.) Use the same number of votes for all experiments.

- Include all 3 timing results to validate your experiments.

ii. Very briefly (2-4 sentences) speculate on any performance difference among the locks.

Submission Guidelines

Please follow these guidelines carefully. Review the Assignment Guidelines and C++ Coding Guidelines before starting each assignment. Each text file, i.e., *.txt file, must be ASCII text and not exceed 500 lines in length, where a line is a maximum of 120 characters. Programs should be divided into separate compilation units, i.e., *.h,cc,C,cpp} files, where applicable. Use the `submit` command to electronically copy the following files to the course account.

1. MPRNG.h – random number generator (provided)
2. q1tallyVotes.h, q1*.h, q1*.cc,C,cpp – code for question question 1a, p. 1. **Program documentation must be present in your submitted code. No user or system documentation is to be submitted for this question.**

3. q1*.txt – contains the information required by question 1b.

4. Modify the following Makefile to compile the programs for question 1a, p. 1 by inserting the object-file names matching your source-file names.

```makefile
KIND:=MC
OUTPUT:=OUTPUT

CXX = u++ # compiler
CXXFLAGS = -g -multi -O2 -std=c++11 -Wall -Wextra -MMD -D$KIND -D$OUTPUT # compiler flags
MAKEFILE_NAME = $(firstword $(MAKEFILE_LIST)) # makefile name

OBJECTS1 = q1tallyVotes$KIND.o # list of object files for question 1 prefixed with "q1"
EXEC1 = vote

OBJECTS = $(OBJECTS1) # all object files
DEPENDS = $(OBJECTS:.o=.d) # substitute ".o" with ".d"
EXECS = $(EXEC1) # all executables

.PHONY : all clean
all : $(EXECS) # build all executables

-include ImplKind

ifeq ($(IMPLKIND),$(KIND)) # same implementation type as last time ?
($(EXEC1) : $(OBJECTS2))
 $(CXX) $(CXXFLAGS) $^ -o @
else
ifeq ($(KIND),) # no implementation type specified ?
KIND=$(IMPLKIND)
($(EXEC1) : $(OBJECTS1))
 $(CXX) $(CXXFLAGS) $^ -o @
else # implementation type has changed
.PHONY : $(EXEC1)
$(EXEC1) :
 rm -f ImplKind
 touch q1tallyVotes.h
 sleep 1
 $(MAKE) $(EXEC1) KIND="$(KIND)"
endif
endif

ImplKind :
echo "IMPLKIND=$(KIND)" > ImplKind
 sleep 1

# OPTIONAL : changes to this file => recompile
$(OBJECTS) : $(MAKEFILE_NAME)

-include $(DEPENDS) # include ".d" files containing program dependences

clean :
 rm -f *.d *.o $(EXECS) ImplKind
```

This makefile is invoked as follows:
$ make vote KIND=MC
$ vote . . .
$ make vote KIND=SEM
$ vote . . .
$ make vote KIND=BAR

Put this Makefile in the directory with the programs, name the source files as specified above, and enter the appropriate make to compile a specific version of the programs. This Makefile must be submitted with the assignment to build the program, so it must be correct. Use the web tool Request Test Compilation to ensure you have submitted the appropriate files, your makefile is correct, and your code compiles in the testing environment.

Follow these guidelines. Your grade depends on it!