
Midterm Answers – CS 343 Fall 2025

Instructor: Peter Buhr

October 29, 2025

These are not the only answers that are acceptable, but these answers come from the notes, assignments,

or lectures.

1. (a) 3 marks

1 SDW: ;
1 S;
1 if (C) goto SDW;

(b) 3 marks

1 C: {
if (C1) {

S1;
if (C2) {

S2;
if (C3) {

S3;
1 break C;

}
}

}
1 S4; // only once

}

{
if (C1) {

S1;
if (C2) {

S2;
if (C3) {

S3;
1 goto C;

}
}

}
1 S4; // only once
1 } C: ;

(c) 1 mark Nested control structures can be added without changing existing code.

(d) 2 marks A VLA is an array that is dynamically sized at creation and it appears on the stack.

(e) 2 marks uArrayPtr performs a single dynamically allocation O(1) in the heap for an array of N

elements. unique_ptr creates an array of N pointers in the heap and performs O(N) dynamic allo-

cations for each element.

(f) 2 marks (one of) Specifically, stack smashing occurs when a non-local goto (longjmp) transfers to

a stack frame that has been deallocated.

Generally, stack smashing occurs when the stack is corrupted by incorrectly writing data over stack

frames, e.g., buffer overrun.

(g) 7 marks

1 _Exception E;
1 void f(. . ., /* no fixups */) {
1 if (. . .) _Resume E();

// control returns here
}
int main() {

1 try {
1 f(. . .); // no fixups
1 } _CatchResume(E) {

// handler 1
}

- try {

- f(. . .); // no fixups

- } _CatchResume(E) {
1 // handler 2

}
}

1

2. (a) 1 mark An infinite recursion of catch and throw can occur among the handlers at the same level.

(b) 2 marks _CatchResume handler is dynamic return. catch handler is static return.

(c) 3 marks Propagation searches the stack for a _CatchReume handler for R, and does not find one.

The defaultResume is called for R, which throws R. Propagation now unwinds the stack from the

raise until the matching catch clause for R.

(d) 7 marks

i. 2 unguarded, 4 guarded

ii. 2 throws

iii. 7 examined catch clauses

iv. C8

v. B6 resumption, B2 retry, B1 termination

(e) 1 mark heap

(f) 3 marks uThisCoroutine, this, last resumer

(g) 2 marks cycle is call graph, definition-before-use issues building the cycle

3. (a) 3 marks

Normalize: T1 = 10/10 = 1, T4 = 2.5/10 = .25.

Amdahl’s Law:

S4 =
1

(1− .8)+ .8× .25
=

1

.2+ .2

2.5 times

(b) 3 marks

scatter gather

(c) 5 marks

void tree(unsigned int N) {
1 if (N != 0) {
1 COBEGIN
1 BEGIN tree(N / 2); END
1 BEGIN tree(N / 2); END

COEND
1 } else p();

}

(d) 3 marks

i. low-priority task can starve

ii. high-priority code can go right back into critical section after exit protocol

iii. it alternates priority so tasks take turns backing down if the other wants in

(e) 1 mark synchronization

2

4. 20 marks

1 void error() {
1 _Resume Error() _At resumer();
1 _Throw Error(); // raise local and terminate

} // Phone::error

1 void getNdigits(int N) {
1 for (int i = 0; i < N; i += 1) { // must have 3 digits
1 if (! isdigit(ch)) { error(); } // must have digit
1 suspend(); // get next character

} // for
} // Phone::getNdigits

void main() {
1 try {
1 if (ch == ’(’) { // area code ?
1 suspend(); // get digit
1 getNdigits(3);
1 if (ch != ’)’) { error(); } // must have ’)’
1 suspend(); // get digit

} // if

1 getNdigits(3);
1 if (ch != ’-’) { error(); } // must have ’-’

1 suspend(); // get digit
1 getNdigits(4);

1 if (ch != EOT) { error(); } // must be done
1 _Resume Match() _At resumer();
1 } catch (Error &) {}

} // Phone::main

-5 duplicate code -5 if not using coroutine state.

3

5. (a) 5 marks

1 for (int c = 0, cnt = 0; c < cols; c += 1) {
1 if (row[c] == schmilblick) {
1 cnt += 1;
1 if (cnt == 2) return true;

} // if
} // for

1 return false;

(b) 3 marks

1 COFOR(r, 0, rows,
2 if (! schmilblickCheck(M[r], cols, schmilblick)) found = false;

);

(c) 7 marks

struct WorkMsg : public uActor::Message { // derived message
1 const int * row, cols, schmilblick;

bool & found;
WorkMsg(const int row[], int cols, int schmilblick, bool & found) :

1 Message(uActor::Delete), row(row), cols(cols), schmilblick(schmilblick), found(found) {}
};
_Actor Schmilblick {

1 Allocation receive(Message & msg) {
1 iftype(WorkMsg, msg) { // discriminate derived message
2 if (! schmilblickCheckmsg.row, msg.cols, msg.schmilblick)) msg.found = false;

} endiftype
1 return Finished; // one-shot

}
};

(d) 5 marks

1 uActor::start(); // start actor system
1 Schmilblick schmilblicks[rows];
1 for (unsigned int r = 0; r < rows; r += 1) {
1 schmilblicks[r] | *new WorkMsg(M[r], cols, schmilblick, found);

}
1 uActor::stop(); // wait for all actors to terminate

(e) 7 marks

_Task Schmilblick {
1 const int r, * row, cols, schmilblick;

- uBaseTask & pgmMain;

void main() {
1 try {
1 _Enable {
1 if (! schmilblickCheck(row, cols, schmilblick))
1 _Resume NotSchmilblick() _At pgmMain;

}
1 } catch(Stop &) {}

}
public:

Schmilblick(int r, const int row[], int cols, int schmilblick, uBaseTask & pgmMain) :
1 r(r), row(row), cols(cols), schmilblick(schmilblick), pgmMain(pgmMain) {}
};

4

(f) 13 marks

1 Schmilblick * workers[rows];
1 for (r = 0; r < rows; r += 1) { // create tasks to process rows
1 workers[r] = new Schmilblick(r, M[r], cols, schmilblick, uThisTask());

} // for
1 try {
1 r = 0; // initialize before Enable
1 _Enable {
1 for (; r < rows; r += 1) { // wait for completion and delete tasks
1 delete workers[r];

} // for
} // _Enable

1 } _CatchResume(Schmilblick::NotSchmilblick &) {
1 if (found) {
1 found = false;
1 for (int i = r + 1; i < rows; i += 1) { // immediately stop any more checking
1 _Resume Schmilblick::Stop() _At *workers[i];

} // for
} // if

} // try

5

