WATERLOO

Midterm Examination
Fall 2025

Computer Science 343

Concurrent and Parallel Programming
Sections 001, 002

Duration of Exam: 2 hours
Number of Exam Pages (including cover sheet): 6
Total number of questions: 5
Total marks available: 114

CLOSED BOOK, NO ADDITIONAL MATERIAL ALLOWED

Instructor: Peter Buhr
October 29, 2025

Midterm Exam — CS 343 (F25) 2

1. (a) 3marks Rewrite the following code fragment using only if, labels, and gotos; no else or compound-
statement “{}”.
do {
S;
} while (C);
(b) 3 marks Using only control structures, i.e., no helper routines, rewrite the following nested if
statements so S4 is not duplicated.
if (C1){
St;
if (C2) {
S2;
if (C3) {
S3;
} else
S4;
} else
S4;
} else
S4;

(c) 1 mark For static multi-level exit, why is it good practice not to use unlabelled break statements?
(d) 2 marks Explain the data-structure created by a VLA (variable length array) and where its storage
is allocated
(e) 2marks uArrayPtr(S, a, 42) and unique_ptr<S> a[42] both dynamically create an array of objects
allowing post-declaration initialization. What is difference between these two mechanisms?
(f) 2 marks Explain stack smashing.
(g) 7 marks Given the following fixup code, convert it to the equivalent resumption code.
void f(..., void («fixup)(...)) {
if (...) fixup(...);
// control returns here

}
void fixup1(...) { /* handler 1 %}
void fixup2(...) { /* handler 2 +'}

int main() {
f(..., fixup1);
f(..., fixup2);

2. (a) 1 mark Explain why most programming languages only search the catch clauses at the end of a
try block once, i.e., once E1 is caught, the catch clause for E2 cannot catch the next throw.
try { ... throw E1;

} catch(E1) { ... throw E2; }
}catch(E2) { ... }

(b) 2 marks Name the kind of return performed by a _CatchResume handler. Name the kind of return
performed by a catch handler.
(c) 3 marks Explain the propagation of exception R in the following:

Midterm Exam — CS 343 (F25) 3

_Exception R {};
void rtn() {
try {
_Resume R();
}ecatch(R &) { ...}

}

(d) 7 marks Given the following code fragment:

B1 {
B2 try {
B3 try {
B4 try {
B5 {
B6 try {
... throw (resume) E5(); ...
C1 }catch(E7) { ...}
C2 catch(E8) { ...}
C3 catch(E9) { ...}
}

C4 }catch(E4) { ...}
C5 catch(E5) { ... throw; ...}
C6 catch(E6) { ...}
C7 }catch(E3) { ...}
C8 }catch(E5) { ...}
C9 catch(E2) { ...}

!

i. How many unguarded and guarded blocks are on the stack?
ii. How many throws occur?
iii. How many catch clauses are examined across all the throws?
iv. Which catch clause handles the exception?
v. Which block does the handler catch-clause transfer to for resumption, retry, and termination?
(e) 1 mark Where is a uC+ coroutine stack allocated?

(f) 3 marks Name the coroutine that becomes inactive/active at locations 1, 2, and 3, below.

control flow semantics

inactive ------}----- = active
resiime 2
1
suspend 3

context switch
(g) 2 marks What property is necessary for full coroutining; why is it difficult to create this property?

3. (a) 3 marks Programs P1 and P2 both take 10 seconds user time when run on 1 CPU. P1 is 100% par-
allel and takes 2.5 seconds real time on 4 CPUs. P2 is 20% sequential and 80% parallel. Compute
the speedup of P2 on 4 CPUs.

(b) 3 marks Draw a picture of the scatter/gather concurrency pattern.

(c) 5 marks Recursion is used (below) to linearly create a dynamic number of work units using
COBEGIN/COEND. Write a tree routine to create work units exponentially (base 2), where tree
is called with a power of 2.

Midterm Exam — CS 343 (F25) 4

void loop(unsigned int N) {
if (N!=0){
COBEGIN // linear creation
BEGIN p(...); END
BEGIN loop(N - 1); END // recursively create more work units
COEND // wait for work units to complete

}

(d) 3 marks The following is the entry protocol code for the prioritized retract intent algorithm for
mutual exclusion.
if (priority == HIGH) {
me = Wantln;
while(you == Wantin) {}
} else {
while(true) {
me = Wantln;
if (you == DontWantIn) break;
me = DontWantln;
while(you == Wantin) {}

}

i. What is the problem with the protocol?
ii. Explain how the problem arises.
iii. How does Dekker’s algorithm overcome the problem?

(e) 1 mark Are barrier locks for synchronization or mutual exclusion?

4. 20 marks Write a semi-coroutine with the following public interface (you may only add a public destruc-
tor and private members):

_Coroutine Phone {

char ch; // character passed by cocaller
void main(); // YOU WRITE THIS ROUTINE
public:
enum { EOT = '\003" }; // end of text
_Exception Match {}; // characters form a valid string in the language
_Exception Error {}; // last character results in string not in the language
void next(char c) {
ch = ¢;
resume();

b

which verifies a string of characters constitutes a valid North American telephone number. The string is
described by the following grammar:

phoneno : area,, trunk dash number
area : (7 3-digit-number)"

trunk : 3-digit-number

dash : “-”

number : 4-digit-number

where the quotation marks are metasymbols and not part of the described language, and ,,; means op-
tional (0 or 1). The following are some valid and invalid phone numbers:

Midterm Exam — CS 343 (F25) 5

valid strings ‘ invalid strings
(876)343-8760 789 6543
456-9807 | (88)345-8790
786-5555 | (888)45-8790
(800)555-1212 | (888)345-879

Assume the C library routine isdigit; isdigit(c) returns true if ¢ is a digit;

After creation, the coroutine is resumed with a series of characters (one at a time), plus an EOT (end-of-
text) character after all characters are passed. The coroutine accepts characters until:

* the characters form a valid string in the language, and it then raises the exception Phone::Match at
the last resumer;

* the last character results in a string not in the language, it then raises the exception Phone::Error at
the last resumer.

After the coroutine raises a Match or Error exception, it must terminate; sending more characters to the
coroutine after this point is undefined. Marks will be deducted for duplicate code.

Write ONLY Phone::main, do NOT write a main program that uses it! No documentation or error
checking of any form is required.

Note: Few marks will be given for a solution that does not take advantage of the capabilities of the
coroutine, i.e., you must use the coroutine’s ability to retain data and execution state.

5. Divide and conquer is a technique that can be applied to certain kinds of problems. These problems are
characterized by the ability to subdivide the work across the data, such that the work can be performed
independently on the data. In general, the work performed on each group of data is identical to the work
that is performed on the data as a whole. What is important is that only termination synchronization is
required to know the work is done; the partial results can then be processed further.

A Schmilblick matrix of size N x M contains at least two Schmilblick values (here —1) in each row.

1 -1 3 4 -1 1 -1 3 4 -1
-1 1 4 -1 6 2 1 4 -1 6
3 -1 -1 6 -1 3 -1 -1 6 -1
-1 6 7 -1 1 -1 6 7 -1 1
4 -1 -1 1 -1 4 25 6 1 8
Schmilblick Non — Schmilblick

(a) 5 marks Write a sequential routine to efficiently check if a row of a matrix is a Schmilblick row.
bool schmilblickCheck(const int row[], int cols, int schmilblick);

where row is the matrix row, cols is the columns in the row, and schmilblick is the Schmilblick value.
The function returns true if the row is a Schmilblick and false otherwise.

(b) 3 marks Using routine schmilblickCheck and the following declarations, write a COFOR statement
to concurrently check if each row of matrix M has the Schmilblick property.
cin >> schmilblick >> rows >> cols;
bool found = true; // assume found Schmilblick property

int M[rows][cols];
COFOR(... // YOU WRITE THIS STATEMENT

);

Midterm Exam — CS 343 (F25) 6

(¢) 7 marks Using routine schmilblickCheck, write a message and actor to concurrently check if each
matrix row has the Schmilblick property.
struct WorkMsg : public uActor::Message {
/' YOU WRITE THIS TYPE
I
_Actor Schmilblick {
/' YOU WRITE THIS TYPE
I
(d) 5 marks Using declarations for found and M above, write the code to start/stop the actor system,
create the Schmilblick actors on the stack, and send them a WorkMsg message.

(e) 7 marks Both the COFOR and actor solutions continue checking for Schmilblick rows even if a
non-Schmilblick row is found. For the task solution, if a non-Schmilblick row is found by a task, it
raises the concurrent exception NotSchmilblick at the pgmMain and the task returns (terminates). If a
Schmilblick task receives the concurrent exception Schmilblick::Stop from the program main, it stops
checking and returns (terminates).

Write a task to concurrently check if each matrix row has the Schmilblick property.

_Task Schmilblick { // check row of matrix
// YOU ADD MEMBERS HERE
void main() {
// YOU WRITE THIS MEMBER
}

public:

_Exception Stop {}; // concurrent exceptions

_Exception NotSchmilblick {}; // failed Schmilblick test

Schmilblick(// YOU WRITE THIS MEMBER
int r, // row number
const int row[], // matrix row
int cols, // columns in row
int schmilblick, // schmilblick value
uBaseTask & pgmMain // contact when Schmilblick not found

b

(f) 13 marks Using Schmilblick task, complete the program main below by creating the Schmilblick
tasks in the heap, and then delete each task until all tasks finish, implying a Schmilblick matrix or
a concurrent NotSchmilblick exception is caught. If a concurrent NotSchmilblick exception is caught,
the program main raises exception Schmilblick::Stop at any non-deleted Schmilblick tasks.

int main() {
bool found = true;
int rows, cols;
cin >> rows >> cols;
int M[rows][cols];
// assume data read into matrix M
/7 YOU WRITE CODE TO CHECK M, HANDLE Schmilblick::NotSchmilblick EXCEPTIONS
// AND RAISE Schmilblick::Stop EXCEPTIONS.

No documentation or error checking of any form is required.

