
Midterm Answers – CS 343 Winter 2025

Instructor: Peter Buhr

March 5, 2025

These are not the only answers that are acceptable, but these answers come from the notes, assignments,

or lectures.

1. (a) 1 mark cin is overloaded to return a bool and an istream, so the boolean is called in the conditional

context.

(b) 5 marks

1 if (! C) goto ELSE;
1 S1;
1 goto ENDIF;
1 ELSE: ;

- S2;
1 ENDIF: ;

(c) 1 mark Outdenting exits makes all loop exit-points visible by glancing down the loop body.

(d) 2 marks

for (;;) {
S1

1 if (C1) { E1; break; }
S2

1 if (C2) { E2; break; }
S3

}

(e) 1 mark A flag variable is used solely to affect control flow, i.e., it does not contain data associated

with the computation.

(f) 1 mark When storage must outlive the block in which it is allocated (ownership change).

(g) 2 marks normal outcome: return normal result and transfer after call

exceptional outcome: return alternative result and not transfer after call

(h) 2 marks A routine passed to another routine that is called for an exceptional event to fix-up and

return a corrective result so a computation can continue.

(i) 2 marks Recursion allows multiple stack frames for the same routine, so a transfer point within the

routine is not unique.

(j) 2 marks Stack unwinding walks down (up) the stack, removing stack frames, until a specific target

frame is found, and control continues within that frame.

(k) 2 marks After the catch clause (static return) or after the raise point (dynamic return).

1

2. (a) 2 marks this changes when execution starts in the interface member.

uThisCoroutine changes when the resume statement is executed.

(b) 1 mark The coroutine that started (did the first resume) of the coroutine.

(c) 1 mark The suspends cause the full coroutines to reverse their cycle.

(d) 2 marks There is no stack growth because the coroutines context switch rather than call.

(e) 2 marks A generator/iterator cannot call helper routines or do full coroutining, while a coroutine

can.

(f) 2 marks The _Enable statement controls when nonlocal exception can be delivered, so a coroutine

can prepare (add try block) for handling their delivery.

3. (a) 1 mark A C++ destructor cannot raise an exception, if an exception is being propagated (stack is

being unwound).

(b) 3 marks An increment statement is composed of 3 instructions, with interrupts (context switching)

among them.

ld r1,i // load into register 1 the value of i
// PREEMPTION
add r1,#1 // add 1 to register 1
// PREEMPTION
st r1,i // store register 1 into i

(c) 2 marks In implicit concurrency, the programmer defines the concurrent units of work but not the

threads.

In explicit concurrency, the programmer defines both concurrent units of work and the threads.

(d) 2 marks Program speedup is SC = T1/TC, where C is number of CPUs and T1 is sequential execu-

tion.

(e) 1 mark The longest execution path among a group of threads bounds speedup.

(f) 1 mark No, actors do not have a thread.

(g) 1 mark In selecting a thread for entry to a critical section, the selection cannot be postponed indef-

initely.

(h) 5 marks

1 int Lock = OPEN; // shared
void Task::main() { // each task does

1 int dummy = CLOSED;
do {

1 Swap(Lock, dummy);
1 while(dummy == CLOSED);

/* critical section */
1 Lock = OPEN;

}

(i) 1 mark Blocking locks reduce busy waiting by having the releasing task do additional work (coop-

eration).

(j) 2 marks Barging avoidance allows barging threads to enter a lock but immediately blocks them,

ensuring an unblocked (signalled) thread enters the critical section next.

2

4. 14 marks

1 try {
1 _Enable {

Start:
1 for (;;) {
1 while (ch != word[0]) { next->put(ch); suspend(); }
1 for (unsigned int i = 1; i < len; i += 1) {
2 next->put(ch); suspend();
1 if (ch != word[i]) continue Start;

} // for
1 cnt += 1;
1 next->put(ch); suspend();

} // for
} // _Enable

1 } catch(Eof) {
1 cout << cnt << ’ ’ << word << endl;
1 _Resume Eof{} _At *next;
1 next->put(ch); // activate coroutine to propagate execption

} // try

-4 if not using coroutine state.

5. (a) 5 marks

1 min = max = row[0];
1 for (unsigned int r = 1; r < cols; r += 1) { // find min, max of row
1 if(row[r] < min) min = row[r];
1 if(row[r] > max) max = row[r];

} // for
1 if (min == max) _Resume NonUnique() _At prgMain;

(b) 9 marks

1 try {
1 _Enable {
1 COFOR(r, 0, rows, // thread per row
1 minmax(M[r], cols, rmin[r], rmax[r], prgMain);

); // COFOR
} // _Enable

1 for (r = 0; r < rows; r += 1) { // find overall min and max
1 if(rmin[r] < min) min = rmin[r];
1 if(rmax[r] > max) max = rmax[r];

} // for
1 } _CatchResume(NonUnique) {
1 nonunique += 1;

} // try

3

(c) 8 marks

struct WorkMsg : public uActor::Message {
1 const int * row, cols;
1 int & min, & max;
1 uBaseTask & prgMain;
1 WorkMsg(const int row[], const unsigned int cols, int & min, int & max, uBaseTask & prgMain) :

Message(uActor::Delete), row(row), cols(cols), min(min), max(max), prgMain(prgMain) {}
};
_Actor MinMax {
1 Allocation receive(Message & msg) {
1 Case(WorkMsg, msg) { // discriminate derived message

WorkMsg & w = *msg_d; // eye candy
1 minmax(w.row, w.cols, w.min, w.max, w.prgMain);

} else assert(false); // bad message
1 return Finished; // one-shot

} // MinMax::receive
}; // MinMax

(d) 8 marks

1 try {

- _Enable {
1 uActor::start(); // start actor system
1 MinMax minmax[rows];
1 for (unsigned int r = 0; r < rows; r += 1) {
1 minmax[r] | *new WorkMsg(M[r], rows, rmin[r], rmax[r], prgMain);

} // for
1 uActor::stop(); // wait for all actors to terminate

} // _Enable
1 for (r = 0; r < rows; r += 1) { // find overall min and max

- if(rmin[r] < min) min = rmin[r];

- if(rmax[r] > max) max = rmax[r];
} // for

1 } _CatchResume(NonUnique) {

- nonunique += 1;
} // try

(e) 8 marks

_Task MinMax { // check row of matrix
public:

_Exception Stop {}; // concurrent exception
private:

1 const int * row, cols;
1 int & min, & max;
1 uBaseTask & prgMain;

void main() {
1 try {
1 _Enable {
1 minmax(row, cols, min, max, prgMain);

} // _Enable
1 } catch(Stop &) {}

} // MinMax::main
public:

1 MinMax(const int row[], const int cols, int & min, int & max, uBaseTask & prgMain) :
row(row), cols(cols), min(min), max(max), prgMain(prgMain) {}

};

4

(f) 14 marks

1 MinMax * workers[rows];
1 for (r = 0; r < rows; r += 1) { // create tasks to process rows
1 workers[r] = new MinMax(M[r], r, cols, rmin[r], rmax[r], uThisTask());

} // for

1 bool nonunique = false;
1 try {
1 r = 0; // initialize before Enable
1 _Enable {
1 for (; r < rows; r += 1) { // find overall min and max
1 delete workers[r]; // wait for completion and delete tasks

} // for
} // _Enable

1 } _CatchResume(NonUnique) {
1 if (! nonunique) {
1 for (int i = r + 1; i < rows; i += 1) {
1 _Resume MinMax::Stop() _At *workers[i];

} // for
1 nonunique = true;

} // if
} // try

5

