WATERLOO

Midterm Examination
Winter 2025

Computer Science 343
Concurrent and Parallel Programming
Sections 001

Duration of Exam: 2 hours
Number of Exam Pages (including cover sheet): 5
Total number of questions: 5
Total marks available: 116

CLOSED BOOK, NO ADDITIONAL MATERIAL ALLOWED

Instructor: Peter Buhr
March 5, 2025

Midterm Exam — CS 343 (W25) 2

1. (a) 1 mark Many C+ programmers use the following coding pattern to eliminate duplicate code.

while (cin >> i) {

}

Explain how it works.
(b) 5 marks Rewrite the following code fragment using only if, labels, and gotos; no else or compound-
statement “{}”.

if (C){
S1;
} else {
S2;
}

(¢) 1 mark Why is out-denting loop exits good eye-candy?
(d) 2 marks Simplify the following code pattern:
for () {
S
if (C1) break;
S2
if (C2) break;
S3

}
if (C1) E1;
else E2;
(e) 1 mark Explain the term flag variable.

(f) 1 mark Explain the primary code pattern that necessitates the use of the heap allocation versus the
stack.

(g) 2 marks Explain the term multiple/alternate outcomes with respect to routine call.
(h) 2 marks Explain the purpose of a fixup routine.
(i) 2 marks Explain how recursion affects setting the value of a label variable.
(J) 2 marks Explain the term stack unwinding.
(k) 2 marks When an exception handler returns, give two possible transfer points.
2. (a) 2marks With respect to calling a coroutine’s interface member, when does the this and uThisCoroutine
variable change?
(b) 1 mark When a coroutine’s main returns, which coroutine is resumed?

(c) 1 mark If two coroutines are in a resume-resume cycle, what happens if both coroutines do sus-
pends?

(d) 2 marks If two coroutines are in a resume-resume cycle, do the coroutine stacks grow in relation
to the number of cycles? If not, why not?

(e) 2 marks How is a generator/iterator different from a coroutine?
(f) 2 marks Explain what the _Enable statement does, and why it is necessary with respect to non-local
exceptions among coroutines?
3. (a) 1 mark When is it wrong for a C+ destructor to raise an exception?
(b) 3 marks Show why the statement i += 1 is not safe in a concurrent program.
(c) 2 marks What is the difference between implicit and explicit concurrency?
(d) 2 marks Give the definition of speedup in parallel execution.

Midterm Exam — CS 343 (W25) 3

(e) 1 mark Explain the term critical path with respect to parallel speedup.
(f) 1 mark Does an actor have a thread?
(g) 1 mark Explain rule 4 (liveness) of the mutual exclusion game.
(h) 5 marks Given the following atomic swap-instruction, use it to create an N-thread mutual-exclusion
lock. Starvation is allowed.
void Swap(int & a, & b) {
int temp;
// begin atomic
temp = a;
a=b;
b = temp;
// end atomic
}

(1) 1 mark How do blocking locks reduce busy waiting?
(§) 2 marks Explain barging avoidance.

4. 14 marks Given the following abstract filter class.

_Coroutine Filter {

protected:
_Exception Eof {}; // no more characters
Filter next; // next filter in chain
unsigned char ch; // communication variable
public:

Filter(Filter » next) : next(next) {}
void put(unsigned char c) {

ch = c;

resume();

J§
Write the following semi-coroutine filter with the given public interface (you may only add a public
destructor and private members), which counts the number of strings "Fred" in the input stream and
passes all the text to the next filter.

_Coroutine Find : public Filter {
void main() {
const char word[] = "Fred";
unsigned int len = sizeof(word) - 1;
unsigned int cnt = 0;
// YOU WRITE THIS CODE
}
public:
Find(Filter = f) : Filter(f) {}
I

The string "Fred" can appear anywhere, e.g., in this input sequence:

Fred

FreFreFredstutter

asd ad Fred adsd Fred
FFreFredFre

the filter generates the following output at end-of-file.
5 Fred

Midterm Exam — CS 343 (W25) 4

Write ONLY the designated portion of Find::main; do NOT write any other filters or main program that
uses them!

No documentation or error checking of any form is required. Note: Few marks will be given for a
solution that does not take advantage of the capabilities of the coroutine, i.e., you must use the coroutine’s
ability to retain data and execution state.

5. Divide and conquer is a technique that can be applied to certain kinds of problems. These problems are
characterized by the ability to subdivide the work across the data, such that the work can be performed
independently on the data. In general, the work performed on each group of data is identical to the work
that is performed on the data as a whole. What is important is that only termination synchronization is
required to know the work is done; the partial results can then be processed further.

Write the following uC+ code fragments to efficiently find the minimum and maximum values in an
N x M matrix, if and only if each row has a unique min/max value. A non-unique row has min == max.

non-unique unique non-unique unique
1 4 1 1 1 1 1 3 4
(7) (4 > 12 3 2 2 3 3
3 3 3 3 4 6 6
min == max,row 1 min —1,max 4 min == max,rows 1,3 min 1,max 6

Assume the following declarations in the program main.

unsigned int rows, cols;

int M[rows][cols], rmin[rows], rmax[rows];
int min = INT_MAX, max = INT_MIN;
unsigned int nonunique = 0;

For the COFOR and actor solutions, find the overall min/max from arrays rmin and rmax and put them into
variables min/max. (For the actor solution, just put a comment where this code goes rather than copying
it again.) As well, count the number of non-unique rows in the matrix from the non-local exceptions
raised.

(a) 5 marks Write a sequential routine to find the unique min and max in the row of an array.

_Exception NonUnique {}; / row is non-unique
void minmax(const int row[], const unsigned int cols,
int & min, int & max, uBaseTask & prgMain) {
// YOU WRITE THIS FUNCTION

}

where row is the matrix row to test, cols is the number of columns in the row, min/max are out-
put variables for the results, and pgmMain is the address of the program-main task. If the routine
determines the tested row is non-unique, it raises the exception NonUnique at the program main
and returns. Note, a concurrent non-local exception works between the COFOR and actor executor
threads, and the program-main thread.

(b) 9 marks Write a COFOR statement to appear in the program main, where each iteration of the
COFOR uses routine minmax to find the min/max for its matrix row. Warning, uThisTask() inside
the COFOR returns the task id of a thread created by COFOR not the program-main task.

(c) 8 marks Write a message and actor with the following interface.

Midterm Exam — CS 343 (W25) 5

struct WorkMsg : public uActor::Message {
// YOU WRITE THIS TYPE
}.

_,Actor MinMax {
Allocation receive(Message & msg) {
// YOU WRITE THIS MEMBER

}

I
WorkMsg contains the information needed by MinMax to compute a row’s min/max values.

(d) 8 marks Write the statements necessary for the program main to start the actor system, create a
MinMax actor per row on the stack, and send each actor an appropriately-initialized dynamically-
allocated WorkMsg message to start it.

(e) 8 marks Write a task with the following interface (you may only add a public destructor and private

members):
_Task MinMax { // check row of matrix
public:
_Exception Stop {}; // concurrent exception
private:

// YOU ADD MEMBERS
void main() {

// YOU WRITE THIS MEMBER
} 7/ MinMax::main

public:
MinMax(// YOU WRITE THIS MEMBER
const int row[], // matrix row
int cols, // row columns
int & min, int & max // output returns

uBaseTask & pgmMain // contact if non-unique min/max
);
I§

The program main raises the concurrent Stop exception at a MinMax task, once it determines a matrix

row is non-unique. The exception means stops performing the row check and return immediately.
(f) 14 marks Write the statements necessary for the program main to create the MinMax tasks on

the heap, and then delete each task. When the first concurrent NonUnique exception is caught, a

MinMax::Stop is raised at any non-deleted MinMax tasks. Note, the program main must create all

tasks, even though a NonUnique exception can be raised during creation.

No documentation or error checking of any form is required.

