Mobile UI

Device, Input, Interaction Characteristics
Why touch?

Space optimization!
- Touch screens combine input and output, which optimizes the display/output area
- Allow interfaces to be customized
Desktop and Mobile

[Image of a desktop and mobile UI showing Gmail and Google Play的基础上的社交和推广内容。]
Device Characteristics

- Limited resources
 - Limited memory
 - Limited processing
 - Battery conservation

- Primarily touch interaction
 - Input capabilities and challenges

- Mobile form factor
 - Small display size
 - Different aspect ratios (orientations)
 - Single application focus
Design is about Constraints

“One way to look at design — at any kind of design — is that it’s essentially about constraints (things you have to do and things you can’t do) and tradeoffs (the less-than-ideal choices you make to live within the constraints).”

- Steve Krug (“Don’t Make Me Think Revisited”)
Limited Resources

- Limited processing capabilities
 - Intensive tasks need to be done offline/preprocessed

- Single application model
 - One app in the foreground, others suspended
 - Few active background processes

- Primarily full-screen apps, consisting of a sequence of screens
 - Limits interaction but also limits processing requirements

- Responsiveness
 - connectivity, data rates, reliance on server

→ Big implications for UI programming model
It’s all about the screen.
Capacitive Touch Screen Technology

- Finger changes material capacitance

- **Surface Capacitance**
 - voltage applied to conductive material creates *electrostatic field*
 - a finger touch creates a capacitor
 - measure effective capacitance at four corners to localize touch
Capacitive Touch Screens

- Finger changes material capacitance

- **Projective Capacitive (PCT, PCAP)**
 - X-Y grid of thin wires or electrodes (driving lines, sensing lines)
 - a capacitor at each wire intersection
 - measure effective capacitance each point
Touch Sensing Accuracy

- Touch screen input is noisy
- Estimates for “pressure” very noisy

Mobile UI
Design for Fingers, Touch and People, Steven Hoober (https://www.uxmatters.com)
Display Size

Worldwide Smartphone Shipment Forecast by Screen Size, 2015-2021

Automated Touch Screen Testing with Robots

- https://youtu.be/qw3OkC5CaZU?t=49s
Input & Interaction
Stylus versus Finger

Stylus

Finger
Stylus versus Touch

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>PEN</th>
<th>TOUCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacts</td>
<td>1 point</td>
<td>1-10+ contact regions</td>
</tr>
<tr>
<td></td>
<td>A single well-defined point.</td>
<td>Often with shape information (Cao et al. 2008).</td>
</tr>
<tr>
<td>Occlusion</td>
<td>Small (pen tip)</td>
<td>Moderate ("fat finger") to Large (pinch, palm, whole hand gestures)</td>
</tr>
<tr>
<td></td>
<td>But hand still occludes screen.</td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Tripod grip / lever arm affords precision, writing & sketching tasks.</td>
<td>Nominal target size for rapid acquisition via touch is about 10-18 mm² (Vogel and Baudisch 2007) (Sears 1993) (Lewis, Potosnak, and Magyar 1997)</td>
</tr>
<tr>
<td>Hand</td>
<td>Preferred hand</td>
<td>Either hand / Both hands</td>
</tr>
<tr>
<td>Elementary Inputs</td>
<td>Tap, Drag, Draw Path</td>
<td>Tap, Hold, Drag Finger, Pinch</td>
</tr>
<tr>
<td>Intermediary</td>
<td>Mechanical Intermediary</td>
<td>None: Bare-Handed Input</td>
</tr>
<tr>
<td></td>
<td>Takes time to unsheath the pen.</td>
<td>Nothing to unsheath, nothing to lose.</td>
</tr>
<tr>
<td></td>
<td>Pen can be forgotten.</td>
<td>No lever arm.</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>High (first use: unsheath the pen)</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Moderate on subsequent uses: pen tucked between fingers.</td>
<td>No mechanical intermediary to acquire.</td>
</tr>
<tr>
<td>Buttons</td>
<td>Barrel Button, Eraser (some pens)</td>
<td>None</td>
</tr>
<tr>
<td>Activation Force</td>
<td>Non-Zero</td>
<td>Zero (capacitive touch).</td>
</tr>
<tr>
<td>False Inputs</td>
<td>Tip switch or minimum pressure.</td>
<td>Note that resistive touch requires some force.</td>
</tr>
<tr>
<td></td>
<td>Palm Rejection: Palm triggers accidental inputs, fingers drag on screen while writing, etc.</td>
<td>"Midas Touch Problem"</td>
</tr>
<tr>
<td></td>
<td>This is a difficult problem. Designs must accommodate incidental palm contact when it inevitably occurs.</td>
<td>Fingers brush screen, finger accidentally rests on screen while holding device, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Chess Player's Syndrome"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device senses touch when none occurred. Common problem on optical touch-screens.</td>
</tr>
</tbody>
</table>

“Input Technologies and Techniques” by Hinckley and Wigdor.
Touch Input Characteristics

Touch is the primary input modality on multi-touch devices!

Available in current devices

- Number of points of contact (typically 10+ for iOS and Android)
- Finger pressure (Apple 3D touch)
- Location and orientation (gyroscope, accelerometer, magnetometer)

Not widely available (yet)

- Finger tracking (i.e. knowing which finger is being used)
- User orientation
Different Ways to Hold

Cradled

Hold and Touch

Two Hands – Landscape

One Hand – First Order

One Hand – Second Order

Two Hands – Portrait

Design for Fingers, Touch and People, Steven Hoober (https://www.uxmatters.com)
Standard Gestures

- Touch–screen interaction commonly uses simple, one or two-finger touches and swipes (i.e. we track position and motion on-screen).
- May be augmented with on-screen widgets.
Expanded Gestures

- We can increase expressivity with time-based or contact-based gestures; these aren’t standard across applications, but do exist.
- Could also be augmented with voice, finger pressure, in-air gestures, but little commercial support (yet).
Jeff Han’s “Lava Lamp” demonstration

https://www.youtube.com/watch?v=QKh1Rv0PIOQ&noredirect=1
Direct Manipulation via Gestures
Challenge: Human Accuracy

- People have “fat fingers”, which leads to occlusion and precision issues
- Touch targets need to be large
 - Apple recommends 15mm
 - Microsoft recommends 9mm (min 7mm; min spacing 2mm)

Design for Fingers, Touch and People, Steven Hoober (https://www.uxmatters.com)
Challenge: Human Accuracy Varies By Position and Grip

- Accuracy affected by
 - Hand posture (i.e. hand is holding, and hand used to interact)
 - Finger vs. thumb used to interact
 - Walking vs. sitting

Design for Fingers, Touch and People, Steven Hoober (https://www.uxmatters.com)
Challenge: No Hover State in Touch

- Having a middle “tracking” input state allows for hover
 - users can preview action before committing
- Mouse input typically supports 3-states (not touching, dragging, mouse-down)
- Touch-input only supports 2-states (i.e. touching or not-touching the screen).

“Imprecision, Inaccuracy, and Frustration: The Tale of Touch Input” by Benko and Wigdor
Challenge: Multi-touch Dispatch Ambiguity

- In multi-touch, multiple fingers may hit a control simultaneously... leading to ambiguity

- when is click event generated?
 - “click” events generated for buttons only when the last contact is lifted from the control.
 - “click” events generated every time a user taps a button, even if another finger is holding it down
 - over-capture: multi-touch controls captured by more than 1 contact simultaneously (e.g., selecting the thumb of a slider with two fingers can mean that it will not track directly under a single finger when moved.)
Challenge: Physical Constraints

- Touch input relies on the principle of direct manipulation, i.e., user places their fingers onto an object, moves their fingers, and the object changes its position, orientation and size to maintain the contact points.

- Direct touch breaks when movement constraints are reached (e.g., moving beyond bounds, scrolling past limits).

- Solution:
 - elastic effects (e.g., apple iPhone scrolling past a list)
Design
Device Characteristics: Interaction

- One app at a time
 - one app in the foreground
 - most apps are suspended when not in the foreground

- Each app has window that fills the entire screen
 - interaction is a sequence of different screens
 - consistent navigation model is key

- Cannot expect users to switch between applications!
 - Very difficult to lookup data in a different app

- Controls need to be large – overcome occlusion and precision issues
 - Also need to be selectable while moving (walking or running)
Gesture Example: Clear

- https://youtu.be/DFzivf2E7KI?t=4s
Navigation

- Books
- up
- back
- gestures

Conversation list

Conversation 1 details
Conversation 2 details
Conversation 3 details

Mobile UI
Android Design: Creative Vision

- (circa 2013, but still relevant today)

Enchant me
Beauty is more than skin deep. Android apps are sleek and aesthetically pleasing on multiple levels. Transitions are fast and clear; layout and typography are crisp and meaningful. App icons are works of art in their own right. Just like a well-made tool, your app should strive to combine beauty, simplicity and purpose to create a magical experience that is effortless and powerful.

Simplify my life
Android apps make life easier and are easy to understand. When people use your app for the first time, they should intuitively grasp the most important features. The design work doesn’t stop at the first use, though. Android apps remove ongoing chores like file management and syncing. Simple tasks never require complex procedures, and complex tasks are tailored to the human hand and mind. People of all ages and cultures feel firmly in control, and are never overwhelmed by too many choices or irrelevant flash.

Make me amazing
It’s not enough to make an app that is easy to use. Android apps empower people to try new things and to use apps in inventive new ways. Android lets people combine applications into new workflows through multitasking, notifications, and sharing across apps. At the same time, your app should feel personal, giving people access to superb technology with clarity and grace.
“Enchant Me”

Delight me in surprising ways
A beautiful surface, a carefully-placed animation, or a well-timed sound effect is a joy to experience. Subtle effects contribute to a feeling of effortlessness and a sense that a powerful force is at hand.

Real objects are more fun than buttons and menus
Allow people to directly touch and manipulate objects in your app. It reduces the cognitive effort needed to perform a task while making it more emotionally satisfying.
“Simplify My Life”

I should always know where I am
Give people confidence that they know their way around. Make places in your app look distinct and use transitions to show relationships among screens. Provide feedback on tasks in progress.

If it looks the same, it should act the same
Help people discern functional differences by making them visually distinct rather than subtle. Avoid modes, which are places that look similar but act differently on the same input.
“Make Me Amazing”

It's not my fault

Be gentle in how you prompt people to make corrections. They want to feel smart when they use your app. If something goes wrong, give clear recovery instructions but spare them the technical details. If you can fix it behind the scenes, even better.

Make important things fast

Not all actions are equal. Decide what's most important in your app and make it easy to find and fast to use, like the shutter button in a camera, or the pause button in a music player.

Insert SIM card

Turn off your phone, remove the battery, and carefully insert your SIM card with the gold contact side down. The cut-off corner should end up furthest away from the battery.
Help Users to Enter Information

Provide the Right Data Entry Tool

Anticipate and Predict Input

“Mobile UI Design Pattern” (Bank and Zuberi)
Help Users Find Correct Actions

Highlight New Content

Quick Access to Frequent Actions
Tip: Help Users Find Correct Actions

Make Actions Obvious

Distinguish Between Controls and Content
Avoid Clutter

Hide Meta Data

Hide Secondary Menus
Standards: Interface Guidelines

- Platform-specific design guidelines can provide specific usage examples and hints, beyond these basic guidelines.

iOS Design Guidelines

Android Design Guidelines