
Threads and Concurrency
key concepts: threads, concurrent execution, timesharing,

context switch, interrupts, preemption

Ali Mashtizadeh and Lesley Istead

David R. Cheriton School of Computer Science
University of Waterloo

Fall 2019

1 / 41

What is a thread?

... a sequence of instructions.

A normal sequential program consists of a single thread of
execution.

Threads provide a way for programmers to express
concurrency in a program.

In threaded concurrent programs there are multiple threads of
execution, all occuring at the same time.

Threads may perform the same task.
Threads may perform different tasks.

Recall: Concurrency

... multiple programs or sequences of instructions running, or ap-
pearing to run, at the same time.

2 / 41



Why Threads?

1 Resource Utilization: blocked/waiting threads give up
resources, i.e., the CPU, to others.

2 Parallelism: multiple threads executing simultaneously;
improves performance.

3 Responsiveness: dedicate threads to UI, others to
loading/long tasks.

4 Priority: higher priority; more CPU time, lower priority; less
CPU time.

5 Modularization: organization of execution
tasks/responsibilities.

Blocking

Threads may block, ceasing execution for a period of time, or,
until some condition has been met. When a thread blocks, it is not
executing instructions—the CPU is idle. Concurrency lets the CPU
execute a different thread during this time. CPU time is money!

3 / 41

OS/161 Threaded Concurrency Examples

Key ideas from the examples:

A thread can create new threads using thread fork

New theads start execution in a function specified as a
parameter to thread fork

The original thread (which called thread fork) and the new
thread (which is created by the call to thread fork) proceed
concurrently, as two simultaneous sequential threads of
execution.

All threads share access to the program’s global variables
and heap.

Each thread’s stack frames are private to that thread; each
thread has its own stack.

In the OS

... a thread is represented as a structure or object.

4 / 41



OS/161’s Thread Interface

create a new thread:

int thread_fork(

const char *name, // name of new thread

struct proc *proc, // thread’s process

void (*func) // new thread’s function

(void *, unsigned long),

void *data1, // function’s first param

unsigned long data2 // function’s second param

);

terminate the calling thread:

void thread_exit(void);

volutarily yield execution:

void thread_yield(void);

See kern/include/thread.h

5 / 41

Other Thread Libraries and Functions

join a common thread function to force one thread to block
until another finishes; NOT offered by OS/161

pthreads POSIX threads, a well-supported, popular, and
sophisticated thread API

OpenMP a cross-platform, simple multi-processing and
thread API

GPGPU Programming general-purpose GPU programming
APIs, e.g. nVidia’s CUDA, create/run threads on GPU instead
of CPU

Concurrency and Threads

originated in 1950s to improve CPU utilization during I/O
operations

”modern” timesharing originated in the 1960s

6 / 41



Review: Sequential Program Execution

The Fetch/Execute Cycle

1 fetch instruction PC points to

2 decode and execute instruction

3 increment the PC

7 / 41

Review: MIPS Registers

num name use num name use
0 z0 always zero 24-25 t8-t9 temps (caller-save)
1 at assembler reserved 26-27 k0-k1 kernel temps
2 v0 return val/syscall # 28 gp global pointer
3 v1 return value 29 sp stack pointer

4-7 a0-a3 subroutine args 30 s8/fp frame ptr (callee-save)
8-15 t0-t7 temps (caller-save) 31 ra return addr (for jal)

16-23 s0-s7 saved (callee-save)

conventions enforced in compiler; used in OS
caller-save: it is the responsibility of the calling function to
save/restore values in these registers
callee-save: it the the responsibility of the called function to
save/restore values in these registers before/after use

callee/caller save strategy attempts to minimize the callee saving
values the caller does not use

8 / 41



Review: The Stack

FuncA() {
...

FuncB();

...

}

FuncB() {
...

FuncC();

...

}

Recall:

Functions push argu-
ments (a0-a3), return
address, local vari-
ables, and temporary-
use registers onto the
stack.

9 / 41

Concurrent Program Execution (Two Threads)

Conceptually, each thread executes sequentially using its private reg-
ister contents and stack.

10 / 41



Implementing Concurrent Threads

What options exist?

1 Hardware support. P processors, C cores, M multithreading
per core ⇒ PCM threads can execute simultaneously.

2 Timesharing. Multiple threads take turns on the same
hardware; rapidly switching between threads so all make
progress.

3 Hardware support + Timesharing. PCM threads running
simultaneously with timesharing.

Example: Intel i9-9900X

... 10 cores, each core can run 2 threads (multithreading degree).
Therefore, P = 1, C = 10, and M = 2, so PCM = 20 threads can
run simultaneously.
Note that while cores of a single processor share caches (L2, L3),
threads execute separately.

11 / 41

Timesharing and Context Switches

When timesharing, the switch from one thread to another is
called a context switch

What happens during a context switch:

1 decide which thread will run next (scheduling)
2 save register contents of current thread
3 load register contents of next thread

Thread context must be saved/restored carefully, since
thread execution continuously changes the context

Timesharing

... each thread gets a small amount of time to execute on the CPU,
when it expires, a context switch occurs. Threads share the CPU,
giving the user the illusion of multiple programs running at the same
time.

12 / 41



Context Switch on the MIPS (1 of 2)

/* See kern/arch/mips/thread/switch.S */

switchframe_switch:
/* a0: address of switchframe pointer of old thread. */
/* a1: address of switchframe pointer of new thread. */

/* Allocate stack space for saving 10 registers. 10*4 = 40 */
addi sp, sp, -40

sw ra, 36(sp) /* Save the registers */
sw gp, 32(sp)
sw s8, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, 0(sp)

/* Store the old stack pointer in the old thread */
sw sp, 0(a0)

13 / 41

Context Switch on the MIPS (2 of 2)

/* Get the new stack pointer from the new thread */
lw sp, 0(a1)
nop /* delay slot for load */

/* Now, restore the registers */
lw s0, 0(sp)
lw s1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
lw s5, 20(sp)
lw s6, 24(sp)
lw s8, 28(sp)
lw gp, 32(sp)
lw ra, 36(sp)
nop /* delay slot for load */

/* and return. */
j ra
addi sp, sp, 40 /* in delay slot */
.end switchframe_switch

14 / 41



Switchframe Notes

switchframe switch is called by C function thread switch

thread switch is the caller; it will save/restore the
caller-save registers
switchframe switch is the callee; it must save/restore the
callee-save registers
switchframe switch, saves callee-save registers to the old
thread stack; it restores the callee-save registers from the
new threads stack

MIPS R3000 is pipelined; delay-slots are used to protect
against:

load-use hazards, where loaded values are used in the next
instruction
control hazards, where we don’t know which instruction to
fetch next

15 / 41

What Causes Context Switches?

the running thread calls thread yield
running thread voluntarily allows other threads to run

the running thread calls thread exit
running thread is terminated

the running thread blocks, via a call to wchan sleep
more on this later . . .

the running thread is preempted
running thread involuntarily stops running

The OS

... strives to maintain high CPU utilization. Hence, in addition
to timesharing, context switches occur whenever a thread ceases to
execute instructions.

16 / 41



Thread States

running: currently executing

ready: ready to execute

blocked: waiting for something, so not ready to execute.

17 / 41

OS/161 Thread Stack after Voluntary Context Switch

program calls thread yield,
to yield the CPU

thread yield calls
thread switch, to perform a
context switch

thread switch chooses a new
thread, calls
switchframe switch to
perform low-level context switch

18 / 41



Timesharing and Preemption

timesharing—concurrency achieved by rapidly switching
between threads

how rapidly? impose a limit on CPU time, the scheduling
quantum
the quantum is an upper bound on how long a thread can
run before it must yield the CPU

how do you stop a running thread, that never yields, blocks or
exits when the quantum expires?

preemption forces a running thread to stop running, so that
another thread can have a chance
to implement preemption, the thread library must have a
means of “getting control” (causing thread library code to be
executed) even though the running thread has not called a
thread library function
this is normally accomplished using interrupts

19 / 41

Review: Interrupts

an interrupt is an event that occurs during the execution of
a program

interrupts are caused by system devices (hardware), e.g., a
timer, a disk controller, a network interface

when an interrupt occurs, the hardware automatically
transfers control to a fixed location in memory

at that memory location, the thread library places a procedure
called an interrupt handler

the interrupt handler normally:

1 create a trap frame to record thread context at the time of
the interrupt

2 determines which device caused the interrupt and performs
device-specific processing

3 restores the saved thread context from the trap frame and
resumes execution of the thread

20 / 41



OS/161 Thread Stack after in Interrupt

21 / 41

Preemptive Scheduling

A preemptive scheduler uses the scheduling quantum to
impose a time limit on running threads

Threads may block or yield before their quantum has expired.

Periodic timer interrupts allow running time to be tracked.

If a thread has run too long, the timer interrupt handler
preempts the thread by calling thread yield.

The preempted thread changes state from running to ready,
and it is placed on the ready queue.

Each time a thread goes from ready to running, the runtime
starts out at 0. Runtime does not accumulate.

OS/161 threads use preemptive round-robin scheduling.

22 / 41



OS/161 Thread Stack after Preemption

23 / 41

Two-Thread Example - 1

Thread 1 is RUNNING. Thread 2 is READY, having called
thread yield previously.

24 / 41



Two-Thread Example - 2

A timer interrupt occurs.

25 / 41

Two-Thread Example - 3

Thread 1 is preempted, a trapframe is created to save its context.

26 / 41



Two-Thread Example - 4

The timer interrupt handler determines what happened, and, calls
the appropriate handler.

27 / 41

Two-Thread Example - 5

Thread 1 has exceeded its quantum. Yield the CPU to another
thread, call thread yield.

28 / 41



Two-Thread Example - 6

High-level context switch: choose new thread, save caller-save reg-
isters.

29 / 41

Two-Thread Example - 7

Low-level context switch. Save callee-save registers.

30 / 41



Two-Thread Example - 8

Thread 2 is now RUNNING, Thread 1 is now READY. Thread 2
returns from low-level context switch, restoring callee-save registers.

31 / 41

Two-Thread Example - 9

Return from high-level context switch, restoring caller-save registers.

32 / 41



Two-Thread Example - 10

Return from yield. Context is fully restored. Thread 2 is now running
its regular program.

33 / 41

Two-Thread Example - 11

Thread 2 yields.

34 / 41



Two-Thread Example - 12

High-level context switch.

35 / 41

Two-Thread Example - 13

Low-level context switch.

36 / 41



Two-Thread Example - 14

Thread 1 is now RUNNING. Thread 2 is now READY. Return
from low-level context switch.

37 / 41

Two-Thread Example - 15

Return from high-level context switch.

38 / 41



Two-Thread Example - 16

Return from yield.

39 / 41

Two-Thread Example - 17

Return from interrupt handling functions.

40 / 41



Two-Thread Example - 18

Restore thread 1’s context (stored in the trapframe), return to regular
program.

41 / 41


