Assignment 1: Userspace Multithreading

September 20, 2021

The purpose of this assignment is getting acquaintained with userspace mul-
tithreading and synchronization primitives. This means working with threads,
spinlocks, mutexes, and condition variables.

1 Question 0

This introductory question is about using atomic instructions to create a spin-
lock. The starter code has a set of threads, all incrementing one common counter
in memory. The error in the starter code is that the act of incrementing is not
atomic, that is, it does not finish in one instruction. Below are the C code and
the equivalent x86 assembly code that is actually executed:

counter += 1;

movq rax, [counter |
addq rax, 1
movq [counter], rax

If multiple threads execute the snippet above concurrently then some incre-
ments to the counter are effectively lost. The threads update the counter with
a value one more than the one they read. If they read the same value from the
memory location, one thread is bound to overwrite the other’s update.

Let’s see an example of such an error. supppose that two threads both read
value 5 from the memory location of the counter. The first thread increments
register rax to 6, then stores the value back into memory. The other thread
also increments its own rax to 6, storing the value in the memory location. The
variable has been updated from 5 to 6 to 6 again, instead of going from 5 to 6
then to 7 as expected.

To solve this problem we create critical sections that can only be executed by
a single thread at a time. Only one thread can be in such a section at any given
time, preventing race conditions like the concurrent update problem above. To
other threads, code in a critical section looks like it is run atomically.

In our case we create critical sections using spinlocks, simple state machines
that transition between their states atomically. A spinlock is a variable that can
have a value of 0 (unlocked), or 1 (locked). A thread is able to ‘get the lock’
if it succeeds in changing the value from 0 to 1. It releases the lock by setting



the value by setting the value from 1 to 0. The challenge in creating such a
primitive is to atomically execute the following pseudocode:

void spinlock_lock (int =xlock)

{
while ( *xlock != 0 )
xlock = 1;
}
void spinlock_unlock (int =xlock)
{
xlock = 0;
}

For this assignment we will use atomic instructions to implement spinlocks.
We will more specifically use __atomic_test_and_set and __atomic_clear (see
https://gcc.gnu.org/onlinedocs/gcc/\_0056f\_005fatomic-Builtins.html
for details). Use these two functions to implement spinlock_lock and spinlock_unlock.

2 Question 1

This question introduces threads and the pthread API. Each process can have
multiple threads. Threads have their own set of CPU registers and stack seg-
ments, but share the code and heap segments with each other. Since each thread
runs in a separate CPU, multithreading lets us use more than one cores at a
time to speed up computation.

The APT used by C to create threads is the POSIX threads (pthreads) APIL
The main three functions this API provides are:

e pthread create: This call creates a new thread. The thread starts exe-
cuting from the function given as an argument.

e pthread_exit: This call destroys the thread, but not the process. The
exiting thread may pass a pointer to a variable in the heap as an exit
value, to be read by another thread using pthread_join (see below).

e pthread_join: Wait for another thread in the same process to be done.

A common pattern with multithreading is to spawn multiple workers using
pthread _create from an initial thread, then wait for them to be all done by re-
peatedly calling pthread_join. The initial thread communicates to each worker
what data it needs to process by passing to each one different arguments; this
makes it very easy to parallelize tasks where each thread needs to only work on
part of the data at a time.

For this question we parallelize exactly this kind of workload. We are given
a ‘library’ of news articles, each of which is composed of a sequence of words.



The task we need to parallelize is counting the number of times a certain word
occurs in all articles. To count the number of occurences we traverse the library
one article at a time, and one word at a time. We compare each word against
the one we are looking for, and increment a counter if they are identical.

The task is trivially parallelizable because we can process each article sepa-
rately. That means that we can create an arbitrary number of threads, split the
work between them, and gather all the individual counters using pthread_join.
There is no need for locking since each thread has its own input.

For this exercise fill in the function in the file map.c. The solution needs to
produce identical results with the single threaded version in main. c, and provide
considerable speedup. Please note that the number of libraries provided as input
should be significantly larger than 1 (e.g., 100), so that parallelizing the task
leads to performance gains.

3 Question 2

This question introduces mutexes and condition variables, the two main syn-
chronization primitives of the pthread library. Mutexes function like spinlocks
in that they provide mutual exclusion, but are more efficient: A thread waiting
on a mutex will be scheduled out of the processor, leaving it free for another
thread that can actually do work. A thread waiting on a spinlock on the other
hand will continuously try to take the lock by continuously executing the lock
instruction until it receives it. This leads to wasted CPU cycles if the thread
already in the critical section holds it for a long time.

Condition variables are used to deal with race conditions that arise when
multiple threads attempt to grab the same mutex. For example, assume that
we have a counter that threads either increment or decrement, and which must
stay above 0. If a thread wants to decrement the counter but it is at 0, it has
to wait until the counter is incremented by another thread before decrementing
it. We protect a counter by a mutex both for reads and writes.

If a thread grabs the mutex to decrement the counter and finds it is at 0,
it has to wait for another thread to increment it. The derementing thread,
however, is holding the mutex and thus preventing any modification to the
counter. The decrementing thread must thus leave the lock and wait until an
increment happens.

The issue that arises then is how long to wait. A naive solution would be to
use sleep calls like in the code below:

while (true) {

lock ();

if (condition = true) {
/* Leave with the lock taken =/
break;

}

/x Else try again later =/



unlock ();
sleep (TIMEOUT) ;

This solution, however, has two main weaknesses. If the timeout is too large,
the thread sleeps even when it could execute, potentially leading to massive
performance penalties for the waiting thread. If the timeout is too small, the
thread wakes up too often and wastes CPU time by needlessly trying to execute.

The solution is to use condition variables, an API for notifying waiting
threads to attempt to take the lock and check if the condition they were testing
holds. The waiting thread calls pthread_cond_wait(), while the thread that
notifies uses pthread_cond_signal() or pthread_cond broadcast to wake up
one or all waiting threads.

In this exercise we use this API to synchronize between threads. Each thread
in the code is a producer or a consumer of a shared resource. The threads enter
and exit from the resource at regular intervals. At any point in time, the ratio
of producers to consumers must be higher than a given value (e.g., for a ratio of
two there can only be 4 consumers present in the resource if 2 or more producers
are also present).

Use condition variables to ensure that the number of producers and con-
sumers in the resource leads to a valid ratio. While producers enter freely and
consumers exit freely, since their arrival and departure respectively can only
raise the ratio, producers that want to exit must check whether their movement
will drop the ratio below the allowed value. In that case, they need to wait until
a producer enters or a consumer leaves, raising the ratio to allow for the exit.
The same holds for consumers entering the resource.



