
1

Assignment 2a Guide

System calls to implement

pid_t fork(void);

Create a copy of the current process. Return 0 for the child process and
the PID of the child process for the parent.

pid_t waitpid(pid_t pid, int *status, int options);

Waits for the process specified by pid. Status stores an encoding of the
exit status and the exit code. Returns the PID of the process on success or
-1 on error.

pid_t getpid(void);

Returns the PID of the current process.

void _exit(int exitcode);

Causes the current process to exit. The exit code is reported to the parent
process via the waitpid call.

2

Fork
• Create a new process structure for the child process.

• Create and copy the address space (and data) from the
parent to the child.

• Attach the newly created address space to the child process
structure.

• Assign a PID to the child process and create the parent/child
relationship.

• Create a thread for child process. The OS needs a safe way
to pass the trapframe to the child thread.

• The child thread needs to put the trapframe onto the
stack and modify it so that it returns the current value
(and executes the next instruction).

• Call mips_usermode() in the child to go back to user space.

3

Fork

• Create a process structure for child process.

– You will have to add new field(s) to the process
structure, e.g. pid.

– Use proc_create_runprogram(…) to create the process
structure.

• It sets up VFS and console (don’t worry about these fields
for now).

– Don’t forget to check for errors.

• E.g., what happens if proc_create_runprogram() returns
NULL?

– That said, you can see the tests we run in the assignment
marking report and all of them are successful tests.

4

Fork

• Create and copy the address space.

– Child process must be identical to the parent process.

– as_copy() creates a new address space and copies the
pages from the old address space to the new one.

– Again, check for errors and if so, return an error code.

– Address space is not associated with the new process yet

• Look at curproc_setas() to figure out how to give a
process an address space.

• Do not call it. It changes your address space and you
want to change the child's address space.

– Remember to handle any error conditions correctly. E.g.
what if as_copy() returns an error?

5

Fork

• Assign a PID to child process and create the
parent/child relationship.

– How you do this is completely up to you.

– PIDs should be unique (i.e. no two processes should have the

same PID) and the PID > 0.

– PIDs do not need to be reusable (for CS350).

• Can assume there will be a max of 64 PIDs needed and
just have a global counter that gets incremented.

• proc_bootstrap() would be a good place to initialize
that counter.

• Remember that you need to provide mutual exclusion
for any global structure!

• In real life, PIDs do need to be reusable.

6

Fork

• Create a thread for the child process.

– Use thread_fork() to create a new thread.

– The second parameter of thread_fork() is the process the
thread is going to be attached to. In this case, set it to the
child's process.

– thread_fork() also needs a function (for the thread to run) as
a parameter.

– Consider using enter_forked_process() but you must change
its signature to what thread_fork() expects i.e.
(void *, unsigned long)

– Need to pass a trap frame (pointer) to the child thread.

– That will be the first parameter of enter_forked_process()

7

Fork

• The child thread needs to put the trap frame onto its stack and

modify it so that it returns the correct value.

– How? (think local variables)

– Copy the parent's trap frame to a local variable in the
child's address space, e.g.
enter_forked_process(void *tf_p, …) {

 struct trapframe tf_c = *(…some cast…) tf_p;

– Can we just pass the trap frame pointer directly from the
parent to the child?

• Yes (but requires synchronization), i.e. parent my run
(and return) before child. Consider other approaches.

• E.g. copy the parent's trap frame to the OS heap, then
copy from OS heap to child.

8

Fork
• What must be changed in the trap frame before going back

to user space? In the child's trapframe, you must set
 tf_c.v0 = 0; // return code for child

 tf_c.tf_a3 = 0; // no error

 tf_c.??? += 4; // increment pc

 mips_usermode (…) // return to usermode

– Look at other examples in syscall.c to determine how to
increment the pc.

– Why don’t we need to manually modify the trap frame for
the parent process?

• Note: There are some …'s and ???'s in some places in the
slides. That means you need to fill in the details.

9

Waitpid
How do we use waitpid? (from widefork.c)

void dowait(int childpid, int childnum) {

 int rval;

 if (waitpid(childpid,&rval,0) < 0){

 warnx("waitpid 1");

 return;

 }

 if (WIFEXITED(rval)) {

 if ((WEXITSTATUS(rval)) == childnum) {

 putchar('a'+childnum-1);

 putchar('\n');

 }

 } else {

 putchar('x');

 putchar('\n');

 }

}

Check if process exited
by calling _exit()

Get the exit code.

10

Waitpid
• Only the parent can call waitpid on its children.

• It can call it at most once for that child.

• If waitpid is called before the child process exits, then the parent
must wait/block.
– What should it block on? Semaphore? Condition variable in a

process table? Condition variable specific to the parent
process? To the child process?

• If waitpid is called after the child process has exited, then the
parent should immediately get the exit status and exit code.
– Cannot lose this information! Must be saved somewhere.

• PID cleanup should not rely on waitpid.
– Parent process is not guaranteed to call waitpid when it exits.

• Must consider the case where the parent exits before its children.
– Can we free the parent process structure before its children exit?
– Do the children know how many child processes there are for its

parent?

11

Waitpid

• Encoding exit status and exit code

– Exit code comes from _exit()

– In this assignment, exit status should always be _WEXITED.

– Look at kern/include/kern/wait.h for helper macros.

• Specifically _MKWAIT_EXIT

• This macro combines the argument of _exit() and the exit
status into a single integer value.

12

Getpid

• Returns the PID of the current process

• Simplest system call to implement.

– Need to implement PID assignment.

• Need to perform process assignment even without/before
any fork calls.

– The first user process might call getpid() before creating
any children.

– getpid() needs to return a valid PID for this process.

13

_exit

• Causes the current process to exit

– Don’t worry about having multiple threads in a process.

– We don’t expose thread_fork() as a system call.

– Therefore, user processes will only have one thread.

• Exit code is passed to the parent process (if the parent is alive).

– Can keep process structure around (in the Zombie state).

– Can store the child exit status in a kernel data structure.

There are three cases where a process can be fully deleted.

1. If its parent has already exited.

2. If you exit and all of your children are dead, you can full delete
your children.

3. If your parent has already called waitpid().
Revised Feb 2, 2020

