
1

Assignment 2b Guide
System calls to implement:

pid_t fork(void);
Create a copy of the current process. Return 0 for the child process, and the PID of the child process for
the parent.

pid_t waitpid(pid_t pid, int *status, int options);
Waits for the process specified by pid. Status stores an encoding of the exit status and the exit code.
Returns the PID of the process on success, or -1 on error (it can also return 0 if the option WNOHANG is
specified and process PID has not exited).

pid_t getpid(void);
Returns the PID of the current process.

void _exit(int exitcode);
Causes the current process to exit. The exit code is reported to the parent process via the waitpid call.

int execv(const char *program, char **args);
Replace the currently executing program with a newly loaded program
image. Process structure (e.g. pid and parent) remains unchanged.
Path of the program is passed in as program. Program arguments, args,
is an array of NULL terminated strings. The array is terminated by a NULL
pointer, i.e. in the new user program, argv[argc] == NULL.

Get these
working
before
starting A2b.

They are
needed to
test A2b.

2

runprogram

• execv is very similar to runprogram (kern/syscall/runprogram.c)

• runprogram is used to load and execute the first program from the menu

1. Opens the program file using vfs_open(progname, …)

2. Creates a new address space using as_create,

switches the process to that address space (curproc_setas),

and then mark the current TLB entries as invalid (as_activate).

3. Using the opened program file, load the program image into the
address space's code and data segments using load_elf.

4. Creates the user stack using as_define_stack.

5. Calls enter_new_process (currently without program args), the
stack pointer (determined by as_define_stack) and entry point
for the executable (determined by load_elf)

3

execv

• Count the number of arguments and copy them into the kernel.

• Copy the program path from user space into the kernel.

• Open the program file using vfs_open(prog_name, …).

• Create a new address space, set process to the new
address space, and clear the TLB.

• Using the opened program file, load the program
image using load_elf.

• Copy the arguments from the user space into the new address space.
– Consider copying the arguments (both the array and the strings) onto

the user stack as part of a new modified as_define_stack.

• Delete the old address space (if none of the previous steps failed).

• Call enter_new_process with
– the address to the arguments on the stack,
– the stack pointer (from as_define_stack),
– and the program entry point (from vfs_open).

Copy from
runprogram

4

Argument passing

• Caution: this part trips up many students.

• When copying from/to user-space do not assume the pointer is valid.
– Use special functions that check the validity of the pointers.
– Use copyin/copyout for fixed size variables (integers, arrays, etc.)
– Use copyinstr/copyoutstr when copying NULL terminated strings.

• Recall the parameters of execv(const char *program, char **args)
– First copy the program name into kernel space.
– Next copy in each of the char pointer values (pointer to an arg) until you

get a NULL pointer.
– Then copy in each arg string.

• Don't for get to allocate space for the pointer array and the strings.

• Can assume a total length ≤ 128 bytes.

5

Alignment

• When storing items on the stack (i.e. copying out to the new addr space)
you must worry about alignment.

– chars: no need to worry about the alignment of chars

– ints and pointers: must be 4-byte aligned i.e. their addresses must be
divisible by 4 (as in CS241)

– the stack pointer: must be 8-byte aligned (its address must be divisible by
8) just in case a double is pushed onto the stack next

• Useful defines/macros:
– USERSTACK (base/starting address of the stack) in vm.h
– ROUNDUP (useful for memory alignment) in lib.h
– E.g., args_size = ROUNDUP(args_size, 8);

• First push on the args (i.e. the strings) onto the stack and keep track of the
address of each string (e.g. 0x7FFF FFE8, 0x7FFF FFF0, 0x7FFF FFF3).

• Next put a NULL terminate array of pointers to the strings.

6

Alignment

e.g. /bin/ls -l MrGoose

0x7FFF FFD8 0x7FFF FFE8 argv[0]

0x7FFF FFDC 0x7FFF FFF0 argv[1]

0x7FFF FFE0 0x7FFF FFF3 argv[2]

0x7FFF FFE4 NULL argv[argc]

0x7FFF FFE8 / b i n

0x7FFF FFEC / l s \0

0x7FFF FFF0 - l \0 M

0x7FFF FFF4 r G o o

0x7FFF FFF8 s e \0

0x7FFF FFFC

0x8000 0000 USERSTACK

7

Argument passing

• No need to allocate space for the stack (it has already been allocated).
Just copy everything there.

• Note: USERSTACK is a predefined constant 0x8000 0000. You can write up
to and including 0x7FFF FFFF but do not write at 0x8000 0000.

• Common mistakes:

– Remember that strlen does not count the NULL terminator. Make sure
to include room for the NULL terminator.

– User pointers should be of the type userptr_t

• E.g. the interface for sys_execv should be

int sys_execv(userptr_t progname, userptr_t args)

– Pass a pointer to the top of the stack (e.g. 0x7FFF FFD8 in the example

above) to enter_new_process.

8

Suggested Steps

1. Copy the body of runprogram into execv (i.e. use this as your starting
point) and compile.

2. Copy the program name into the kernel (and kprintf it to the screen to
ensure you've done it correctly).

3. Make the modifications to execv to actually load that program.

Once this is working, implement argument passing.

4. First, just count the number of args (and kprintf it to the screen to
ensure you've done it correctly).

5. Next copy the arg strings into the kernel (and kprintf them to the screen
to ensure you've done it correctly).

6. Finally add the args to the stack.

9

A2b Grading

• The assignment is worth 50 marks.

• A2a Re-Testing

– 18 marks are for re-testing A2a functions (so get that working first if you
haven't already).

• A2b Testing

– hogparty and sty (worth 18 marks) do not involve passing args

– argtesttest, argtest tests, and add (worth 14 marks) involve passing args

• The A2b tests use fork, waitpid and _exit so you must get those working.

• Mercy marks are available (involving code inspection) for the A2b portion
of the assignment.

Last revised Feb 25, 2020

