Assignment 2b Guide

System calls to implement:

pid_t fork(void); \
pid_t waitpid(pid_t pid, int *status, int options);

pid_t getpid(void);

void _exit(int exitcode);

int execv(const char *program, char **args);

Get these
working
before
starting A2b.

They are
needed to
test A2b.

Replace the currently executing program with a newly loaded program
image. Process structure (e.g. pid and parent) remains unchanged.

Path of the program is passed in as program. Program arguments, args,
is an array of NULL terminated strings. The array is terminated by a NULL

pointer, i.e. in the new user program, argv|argc] == NULL.

runprogram

* execv is very similar to runprogram (kern/syscall/runprogram.c)

e runprogram is used to load and execute the first program from the menu

1.
2.

Opens the program file using vfs open(progname, ...)
Creates a new address space using as create,

switches the process to that address space (curproc setas),
and then mark the current TLB entriesasinvalid (as activate).

Using the opened program file, load the program image into the
address space's code and data segments using /oad elf.

Creates the user stack using as define stack.

Calls enter _new process (currently without program args), the
stack pointer (determined by as define stack) and entry point
for the executable (determined by /oad elf)

execv

Count the number of arguments and copy them into the kernel.

Copy the program path from user space into the kernel.
\

Copy from
runprogram

>

J

Copy the arguments from the user space into the new address space.

— Consider copying the arguments (both the array and the strings) onto
the user stack as part of a new modified as_define stack.

Delete the old address space (if none of the previous steps failed).

Call enter new process with

— the address to the arguments on the stack,

— the stack pointer (from as_define stack),

— and the program entry point (from vfs _open).

Argument passing

Caution: this part trips up many students.

When copying from/to user-space do not assume the pointer is valid.
— Use special functions that check the validity of the pointers.

— Use copyin/copyout for fixed size variables (integers, arrays, etc.)

— Use copyinstr/copyoutstr when copying NULL terminated strings.

Recall the parameters of execv(const char *program, char **args)

— First copy the program name into kernel space.

— Next copy in each of the char pointer values (pointer to an arg) until you
get a NULL pointer.

— Then copy in each arg string.

Don't for get to allocate space for the pointer array and the strings.
Can assume a total length < 128 bytes.

Alignment

When storing items on the stack (i.e. copying out to the new addr space)
you must worry about alignment.

— chars: no need to worry about the alignment of chars

— ints and pointers: must be 4-byte aligned i.e. their addresses must be
divisible by 4 (as in CS241)

— the stack pointer: must be 8-byte aligned (its address must be divisible by
8) just in case a double is pushed onto the stack next

Useful defines/macros:

— USERSTACK (base/starting address of the stack) in vm.h

— ROUNDUP (useful for memory alignment) in lib.h

— E.g., args_size = ROUNDUP(args_size, 8);

First push on the args (i.e. the strings) onto the stack and keep track of the
address of each string (e.g. Ox7FFF FFE8, Ox7FFF FFFO, Ox7FFF FFF3).

Next put a NULL terminate array of pointers to the strings.

Alignment
e.g. /bin/ls - MrGoose

Ox7FFF FFDS8 Ox7FFF FFE8 argv[0]
Ox7FFF FFDC Ox7FFF FFFO argv[1]
Ox7FFF FFEQ Ox7FFF FFF3 argv[2]

Ox7FFF FFE4 NULL argv|argc]
OX7FFFFFE8 | / b i n
OX7FFFFFEC | / | s \0
Ox7FFF FFFO - I \0o M

Ox7FFF FFF4 r G o o
Ox7FFF FFF8 s e \0

Ox7FFF FFFC
0x8000 0000 USERSTACK

Argument passing

* No need to allocate space for the stack (it has already been allocated).
Just copy everything there.
* Note: USERSTACK is a predefined constant 0x8000 0000. You can write up
to and including Ox7FFF FFFF but do not write at 0x8000 0000.
e Common mistakes:
— Remember that strlen does not count the NULL terminator. Make sure
to include room for the NULL terminator.
— User pointers should be of the type userptr t
- E.g. the interface for sys execv should be
int sys_execv(userptr_t progname, userptr_t args)
— Pass a pointer to the top of the stack (e.g. 0x7FFF FFDS8 in the example
above) to enter new process.

Suggested Steps

Copy the body of runprogram into execv (i.e. use this as your starting
point) and compile.

Copy the program name into the kernel (and kprintf it to the screen to
ensure you've done it correctly).

Make the modifications to execv to actually load that program.

Once this is working, implement argument passing.

4.

First, just count the number of args (and kprintf it to the screen to
ensure you've done it correctly).

Next copy the arg strings into the kernel (and kprintf them to the screen
to ensure you've done it correctly).

Finally add the args to the stack.

A2b Grading

The assignment is worth 50 marks.

A2a Re-Testing
— 18 marks are for re-testing A2a functions (so get that working first if you
haven't already).

A2b Testing

— hogparty and sty (worth 18 marks) do not involve passing args

— argtesttest, argtest tests, and add (worth 14 marks) involve passing args
The A2b tests use fork, waitpid and _exit so you must get those working.

Mercy marks are available (involving code inspection) for the A2b portion
of the assighment.

Last revised Feb 25, 2020
9

