
1

Assignment 3

• If you have not completed A2a or A2b…

‐ We will only be retesting widefork and hogparty from A2.
‐ No other A3 tests use argument passing or process management

functions (i.e. fork, waitpid, _exit, execv).

▫ For hogparty, execv passes a program name and a NULL argv.
▫ In total widefork and hogparty are only worth 10% of the A3 grade.

‐ If you did not get A2a or A2b working consider reverting back to your
A1 code and build A3 on top of that (rather than spend a lot of time
debugging A2a and A2b for only a limited amount of marks).

2

Assignment 3

• Dumbvm is a very limited virtual memory system with four major
limitations.

1. A full TLB leads to a kernel panic.
2. Text (i.e. code) segment is not read-only.
3. It never reuses physical memory (i.e. kfree does nothing).

▫ Requires restarting the OS after each test

4. It uses segmentation addresses.
▫ which causes external fragmentation
▫ No need to fix this in F22!

• For Assignment 3, fix problems 1 – 3.

• Many former CS350 students say A3 is easier than A2.

• Caution: A3 reduces the amount of physical memory allowed for the tests
so you should be using memory frugally, i.e. make sure you are using kfree
when appropriate, do not have a large PID tables etc.

3

1. TLB Replacement

• VM related exceptions are handled by vm_fault() in dumbvm.c

• vm_fault() performs address translation and loads the virtual address to
physical address mapping into the TLB.

‐ Iterates through the TLB to find an unused/invalid entry.
‐ Overwrites the unused entry with the virtual to physical address

mapping required by the instruction that generated the TLB exception.

• Modify vm_fault() so that when the TLB is full, it calls tlb_random() to
write the entry into a random TLB slot.

‐ That’s it for TLB replacement!
‐ Make sure that virtual page fields in the TLB are unique.

4

2. Read-Only Text Segment

Modification 2a

• Currently, TLB entries are loaded with TLBLO_DIRTY on for all entries.

‐ Therefore, all pages are readable and writeable.

• The text (i.e. code) segment should be read-only.

‐ Load TLB entries for the text segment with TLBLO_DIRTY off, i.e.
elo &= ~TLBLO_DIRTY;

• Determine the segment of the fault address by looking at the vbase and
vtop addresses.

5

2. Read-Only Text Segment

Modification 2b

• Unfortunately, this change will cause load_elf() to throw a
VM_FAULT_READONLY exception when it loads any object file, i.e. all the
A3 tests.

‐ The loader is trying to write to a memory location that is read-only.

• We must instead load TLB entries with TLBLO_DIRTY on until load_elf()
has completed.

‐ Consider adding a flag to struct addrspace to indicate whether or not
load_elf() has completed.

‐ When load_elf() completes, flush the TLB (with as_activate()) and
ensure that all future TLB entries for the text segment has TLBLO_DIRTY
off.

6

2. Read-Only Text Segment

Modification 2c

• Writing to read-only memory address will lead to a
VM_FAULT_READONLY exception.

‐ Currently this exception will cause a kernel panic.

• Instead of panicking, your VM system should kill the process.
‐ I.e. detect when a user program tries to write to read-only memory.
‐ Have vm_fault() return the appropriate error code / signal.
‐ That will be picked up when mips_trap (which handles exceptions and

interrupts) which calls kill_curthread().
‐ Modify kill_curthread (which handles the situation where user-level

code has a fatal fault) to kill the current process.

7

2. Read-Only Text Segment

Modification 2c

• There are three different approaches to modifying kill_curthread.

1. Add the code to kill the thread to kill_curthread. But this approach is

not reusing code.

2. Create your own function very similar to sys__exit (say sys_kill) except

that the exit code/status will be different.

3. Modify your implementation of sys__exit to take a parameter that is

the reason why sys__exit was called.

• Consider which signal number this will trigger. Hint: look at the beginning
of kill_curthread.

There are different macros to encode the status if the program exits or
if it is killed. Use the right macros.

8

3. Managing Memory

0x0

Initially physical memory is unused.

0x0

9

3. Managing Memory

Physical Memory

Memory for bootstrap

During bootstrap, the kernel allocates
memory by calling getppages, which in
turn calls ram_stealmem(num_pages).

ram_stealmem just allocates pages
without providing any mechanism to free
these pages (see free_kpages).

Do not modify this part of the code.

Instead, we want to manage physical
memory after the bootstrap process.

I.e. manage the rest of physical memory
using paging with a data structure called
a core-map.

0x0

10

3. Managing Memory

Core-map

• Keep track of whether the frame is in
use (1) or not (0).

• To allocate RAM search through
core-map to find a large enough
space.

• For allocations of multiple
continuous pages, keep track of how
many pages have been allocated in
the core-map and free it as one big
unit.

• e.g. Frame 0 and 1 are part of one big allocation and so a call to free
frame 0 will free both frames 0 and 1.

• Version 2 of the core-map just keeps the essential information.

Version 1 Version 2
Frame # In Use? Page of Page

0 1 1 2 1
1 1 2 2 2
2 0 0 0 0
3 1 1 1 1
4 1 1 3 1
5 1 2 3 2
6 1 3 3 3
7 0 0 0 0

11

3. Managing Memory

Core-map Version 2

• Allocation would be the same.

• To free pages you need to check its successor
to see if it is part of a larger allocation, i.e. is its
count one higher than your count.

• Must also keep track of where the 0th frame of
the allocation is located in physical memory so
that when memory is requested the kernel can
return an address to the start of the allocation.

For Both Version 1 or 2.

• With either implementation, since you are implementing the core of
memory allocation, so you do not call kmalloc to allocate space for the
core-map, you simply calculate its size and leave the rest of RAM as
frames to be allocated.

Version 2
Page

1
2
0
1
1
2
3
0

12

3. Managing Memory

Physical Memory

Memory for bootstrap

In vm_bootstrap, call ram_getsize to get
the remaining physical memory in the
system.

It will give a low (just after memory for
bootstrap) and a high address.

Once ram_getsize has been called, do not
call ram_stealmem again!

Logically partition the remaining physical
memory into fixed size frames. Each
frame is PAGE_SIZE bytes and its address
must be an integer multiple of the page
size (i.e. it is page aligned).

0x0

13

3. Managing Memory

Physical Memory

Core-map

Memory for bootstrap

Where should we store the core-map
data structure?

Store it in the start of the memory
returned by ram_getsize (i.e. the area
just after the memory used for
bootstrap).

The frames that the core-map manages
should start after the core-map data
structure (rounded up to be a multiple
of the page size).

I.e. the core-map should not track its
own memory usage. Tracking its own
usage can lead to bugs that are hard to
find.

0x0

14

3. Managing Memory

• You never have to kfree the core-map. You use it until the system shuts
down in which case kfreeing it is no longer necessary.

• There are parts of the OS that will be calling kmalloc before you create
the coremap so …

‐ You will need to create a flag to indicate when the kernel can stop
using ram_stealmem and starting using the core-map to allocated
physical memory.

‐ Look at vm_bootstrap to help decide exactly when you create the
core-map.

‐ You must also modify the two functions alloc_kpages(int npages) and
 free_kpages(vaddr_t addr) to use the core-map once it has been
created.

15

Alloc and Free

• alloc_kpages(int npages):
‐ Allocates frames for both kmalloc and for address spaces.
‐ Frames need to be contiguous.
‐ Do not have alloc_kpages interact directly with core map.
‐ Instead look at a function it uses, getppages, and modify it so it uses

ram_stealmem before your core-map is created and uses your core-map
after it is created.

‐ The reason for this is because some parts of the kernel call getppages
directly rather than calling alloc_kpages.

• free_kpages(vaddr_t addr):

‐ It currently does not do anything but it should be freeing pages
allocated with alloc_kpages.

‐ We don’t specify how many pages we need to free so it should free
the same number of pages that was allocated.

‐ It should update the core-map to make those frames available after
free_kpages is called.

16

User Address / Kernel Virtual Address / Physical Address

• The functions ram_stealmem and getppages use physical addresses
whereas alloc_kpages, free_kpages and the rest of the OS work with
virtual addresses. OS/161 has two types, paddr_t and vaddr_t, to
distinguish these two types of addresses.

‐ Only use physical addresses when loading entries in the TLB.
‐ Virtual addresses are converted either by the TLB or by the MMU

directly.
‐ Addresses below 0x8000 0000 are user-space addresses and are TLB

mapped.
‐ Addresses between 0x8000 0000 and 0xa000 0000 are kernel virtual

addresses that are converted by the MMU directly, i.e.
Kernel virtual address – 0x8000 0000 = physical address

• kmalloc always returns a kernel virtual address.

• Do not use kmalloc to allocate frames.

• See the A3 hints on our webpage for the tests we run for A3.

