Assignment 3

e If you have not completed A2a or A2b...

- We will only be retesting widefork and hogparty from A2.
- No other A3 tests use argument passing or process management
functions (i.e. fork, waitpid, _exit, execv).

= For hogparty, execv passes a program name and a NULL argv.
= |n total widefork and hogparty are only worth 10% of the A3 grade.

- If you did not get A2a or A2b working consider reverting back to your
Al code and build A3 on top of that (rather than spend a lot of time
debugging A2a and A2b for only a limited amount of marks).

Assignment 3

e Dumbvm is a very limited virtual memory system with four major
limitations.

1. A full TLB leads to a kernel panic.

2. Text (i.e. code) segment is not read-only.

3. It never reuses physical memory (i.e. kfree does nothing).
= Requires restarting the OS after each test

4. It uses segmentation addresses.
= which causes external fragmentation
= No need to fix this in F22!

e For Assignment 3, fix problems 1 — 3.
e Many former CS350 students say A3 is easier than A2.

e Caution: A3 reduces the amount of physical memory allowed for the tests
so you should be using memory frugally, i.e. make sure you are using kfree
when appropriate, do not have a large PID tables etc.

1. TLB Replacement

o VM related exceptions are handled by vm fault() in dumbvm.c

e« vm fault() performs address translation and loads the virtual address to
physical address mapping into the TLB.

- Iterates through the TLB to find an unused/invalid entry.
- Overwrites the unused entry with the virtual to physical address
mapping required by the instruction that generated the TLB exception.

e Modify vm fault() so that when the TLB is full, it calls t/b _random() to
write the entry into a random TLB slot.

- That’s it for TLB replacement!
- Make sure that virtual page fields in the TLB are unique.

2. Read-Only Text Segment

Modification 2a

e Currently, TLB entries are loaded with TLBLO DIRTY on for all entries.
- Therefore, all pages are readable and writeable.

e The text (i.e. code) segment should be read-only.

- Load TLB entries for the text segment with TLBLO DIRTY off, i.e.
elo &= ~TLBLO DIRTY;

e Determine the segment of the fault address by looking atthe vbase and
vtop addresses.

2. Read-Only Text Segment

Modification 2b

o Unfortunately, this change will cause /oad elf() to throw a
VIM_FAULT READONLY exception when it loads any object file, i.e. all the
A3 tests.

- The loader is trying to write to a memory location that is read-only.

« We must instead load TLB entries with TLBLO DIRTY onuntil load elf()
has completed.

- Consider adding a flag to struct addrspace to indicate whether or not

load elf() has completed.
- When load elf() completes, flush the TLB (with as activate()) and
ensure that all future TLB entries for the text segment has TLBLO DIRTY

off.

2. Read-Only Text Segment

Modification 2c

o Writing to read-only memory address will lead to a
VM _FAULT READONLY exception.

- Currently this exception will cause a kernel panic.

 Instead of panicking, your VM system should kill the process.
- l.e. detect when a user program tries to write to read-only memory.
- Have vm fault() return the appropriate error code / signal.
- That will be picked up when mips trap (which handles exceptions and
interrupts) which calls kill curthread().
- Modify kill curthread (which handles the situation where user-level
code has a fatal fault) to kill the current process.

2. Read-Only Text Segment
Modification 2c

e There are three different approaches to modifying kill curthread.

1. Add the code to kill the thread to kill curthread. But this approach is
not reusing code.

2. Create your own function very similar to sys exit (say sys_kill) except
that the exit code/status will be different.

3. Modify your implementation of sys exit to take a parameter that is
the reason why sys exit was called.

o Consider which signal number this will trigger. Hint: look atthe beginning
of kill curthread.

There are different macros to encode the status if the program exits or
if it is killed. Use the right macros.

3. Managing Memory

Initially physical memory is unused.

0x0

3. Managing Memory

During bootstrap, the kernel allocates
memory by calling getppages, which in
turn calls ram stealmem(num_pages).

ram_ stealmem just allocates pages
without providing any mechanism to free
these pages (see free kpages).

Do not modify this part of the code.

Instead, we want to manage physical
memory after the bootstrap process.

l.e. manage the rest of physical memory
using paging with a data structure called
a core-map.

Physical Memory

Memory for bootstrap

0x0

3. Managing Memory

Core-map

o Keep track of whether the frame isin
use (1) or not (0).

e To allocate RAM search through
core-map to find a large enough
space.

e For allocations of multiple
continuous pages, keep track of how
many pages have been allocated in
the core-map and free it as one big
unit.

Version 1 Version 2
Frame #| In Use? |Page | of Page
0 1 1 |2 1
1 1 2 |2 2
2 0 0O |0 0
3 1 1 |1 1
4 1 1 |3 1
5 1 2 |3 2
6 1 3 |3 3
7 0 O |0 0

e e.g. Frame 0 and 1 are part of one big allocation and so a call to free

frame O will free both frames 0 and 1.

e Version 2 of the core-map just keeps the essential information.

10

3. Managing Memory

Core-map Version 2

Version 2

o Allocation would be the same. Page

e To free pages you need to check its successor 1
to see if it is part of a larger allocation, i.e. is its 2
count one higher than your count. (1)

e Must also keep track of where the 0" frame of 1
the allocation is located in physical memory so 2
that when memory is requested the kernel can 3
return an address to the start of the allocation. 0

For Both Version 1 or 2.

o With either implementation, since you are implementing the core of
memory allocation, so you do not call kmalloc to allocate space for the
core-map, you simply calculate its size and leave the rest of RAM as
frames to be allocated.

11

3. Managing Memory

In vm _bootstrap, call ram getsize to get
the remaining physical memory in the
system.

It will give a low (just after memory for
bootstrap) and a high address.

Once ram getsize has been called, do not
call ram _stealmem again!

Logically partition the remaining physical
memory into fixed size frames. Each
frame is PAGE_SIZE bytes and its address
must be an integer multiple of the page
size (i.e. it is page aligned).

Physical Memory

Memory for bootstrap

0x0

12

3. Managing Memory

Where should we store the core-map
data structure?

Store it in the start of the memory
returned by ram getsize (i.e. the area
just after the memory used for
bootstrap).

The frames that the core-map manages
should start after the core-map data
structure (rounded up to be a multiple
of the page size).

|.e. the core-map should not track its
own memory usage. Tracking its own
usage can lead to bugs that are hard to
find.

Physical Memory

Core-map

Memory for bootstrap

0x0

13

3. Managing Memory

e You never have to kfree the core-map. You use it until the system shuts
down in which case kfreeing it is no longer necessary.

e There are parts of the OS that will be calling kmalloc before you create
the coremap so ...

- You will need to create a flag to indicate when the kernel can stop
using ram stealmem and starting using the core-map to allocated
physical memory.

- Look at vm bootstrap to help decide exactly when you create the
core-map.

- You must also modify the two functions alloc _kpages(int npages) and
free kpages(vaddr t addr) to use the core-map once it has been
created.

14

Alloc and Free

e alloc_kpages(int npages):
- Allocates frames for both kmalloc and for address spaces.

- Frames need to be contiguous.

- Do not have alloc_kpages interact directly with core map.

- Instead look at a function it uses, getppages, and modify it so it uses
ram stealmem before your core-map is created and uses your core-map

after it is created.
- The reason for this is because some parts of the kernel call getppages

directly rather than calling alloc _kpages.
e free _kpages(vaddr t addr):

- It currently does not do anything but it should be freeing pages

allocated with alloc _kpages.
- We don’t specify how many pages we need to free so it should free

the same number of pages that was allocated.
- It should update the core-map to make those frames available after

free kpages is called.
15

User Address / Kernel Virtual Address / Physical Address

e The functions ram stealmem and getppages use physical addresses
whereas alloc _kpages, free kpages and the rest of the OS work with
virtual addresses. 0OS/161 has two types, paddr t and vaddr t, to
distinguish these two types of addresses.

- Only use physical addresses when loading entries in the TLB.

- Virtual addresses are converted either by the TLB or by the MMU
directly.

- Addresses below 0x8000 0000 are user-space addresses and are TLB
mapped.

- Addresses between 0x8000 0000 and 0xa000 0000 are kernel virtual
addresses that are converted by the MMU directly, i.e.
Kernel virtual address — 0x8000 0000 = physical address

e kmalloc always returns a kernel virtual address.
e Do not use kmalloc to allocate frames.

e See the A3 hints on our webpage for the tests we run for A3.
16

