
CS350 Final Review

For what reasons might a process fail to open a file?

1. The file does not exist.
2. The user process does not have the correct permissions.
3. The filename format is incorrect.
4. The file is empty.

For what reasons might a process fail to open a file?

1. The file does not exist.
2. The user process does not have the correct permissions.
3. The filename format is incorrect.
4. The file is empty.

KL
Text Box
1. open will fail if you do not use the option O_CREAT (File Systems 9).
 Note: fopen can fail with "r" or "r+".
2. Check the permissions before opening the file (File Systems 29).
3. Read the directory's data block to see if the file exists (File Systems 28).

A 5400rpm disk has 2^10 tracks with capacity 2^32 bytes. Each track has 2^8
sectors. Maximum seek time is 20ms.

1. What is the capacity of each track?
2. What is the capacity of each sector?
3. How long does it take for a full rotation of the disk?
4. How long does it take to read 10 consecutive sectors?
5. How long does it take to seek 400 tracks away from the current head

position?

A 5400rpm disk has 2^10 tracks with capacity 2^32 bytes. Each track has 2^8
sectors. Maximum seek time is 20ms.

1. What is the capacity of each track? 2^32/2^10 = 2^22 bytes
2. What is the capacity of each sector? 2^22/2^8 = 2^14 bytes
3. How long does it take for a full rotation of the disk?

5400/60 = 1/x -> x = 11.1ms

4. How long does it take to read 10 consecutive sectors?

(10/2^8)11.1ms = 0.436ms

5. How long does it take to seek 400 tracks away from the current head
position?

400/2^10*20ms = 7.8125ms

KL
Text Box
See IO 15-16

KL
Text Box
(faction of full rotation) x (time for full rotation)

KL
Text Box
(fraction of tracks) x (max seek time)

Enumerate the disk operations when executing “ls /usr/bin/local”. Assume local is
a directory.

KL
Text Box
Assumption:

When you read from a directory you do not update its last access time.

Enumerate the disk operations when executing “ls /usr/bin/local”. Assume local is
a directory.

1. Read / i-node
2. Read / data block to retrieve usr i-number
3. Read usr i-node
4. Read usr data block to retrieve bin i-number
5. Read bin i-node
6. Read bin data block to retrieve local i-number
7. Read local i-node
8. Read local data block

KL
Text Box
File Systems slide 28 (repeated twice).

Give one advantage and one disadvantage of chaining.

Give one advantage and one disadvantage of chaining.

Advantages: simple, easy to implement. Works well for sequential file access.

Disadvantages: very slow non-sequential access.

KL
Text Box
File Systems slide 36.

Give a pseudocode implementation of a function that adds two global arrays
(A+B=C) of the same length such that there is one thread for each element of the
array.

Give a pseudocode implementation of a function that adds two global arrays
(A+B=C) of the same length such that there is one thread for each element of the
array.
void AddKernel(void * data, long int idx)

{

C[idx] = A[idx] + B[idx];

}

void SumArrays()

{

For i = 1 to length(A)

thread_fork(“add”, null, AddKernel, null, i);

}

KL
Text Box
Since only the ith thread would access C[i], locks are not needed. See Concurrency slide 11.

Suppose MIPS had an atomic instruction SwapNotEqual such that:

int SwapNotEqual(int &x, int y)
{
 If (x != y)
 Int tmp = x;

x = y;
return tmp;

 return y;
}

Implement a spinlock using SwapNotEqual.

KL
Text Box
Similar to x86's xchg (Synch slide 16) except
 1. order of arguments different
 2. uses a reference rather than a pointer
 3. swap only if different

Suppose MIPS had an atomic instruction SwapNotEqual such that:
Implement a spinlock using SwapNotEqual.

int lock = 1; // lock is free, let 0 mean the lock is NOT free.

While (!SwapNotEqual(lock, 0)) {}

Reason:

If lock = 1; then SwapNotEqual(1, 0) sets lock to 0 and returns 1. !SNE = 0, so
no more looping.

If lock = 0; then SwapNotEqual(0, 0) returns 0. !SNE = 1, so continue looping.

KL
Text Box
Similar to x86's xchg (Synch slide 16) except
 1. true means unlocked

The Linux Completely Fair Scheduler assigns each thread a weight that is
proportional to what share of CPU time the thread should receive. Suppose two
threads A and B have weights 10 and 11 respectively. A has an actual runtime of
5 and B has an actual runtime of 10. If the total thread weight is 100, which of
thread A or B will run next?

The Linux Completely Fair Scheduler assigns each thread a weight that is
proportional to what share of CPU time the thread should receive. Suppose two
threads A and B have weights 10 and 11 respectively. A has an actual runtime of
5 and B has an actual runtime of 10. If the total thread weight is 100, which of
thread A or B will run next?

Virtual Runtime Thread A = AR(TOTAL/W) = 5(100/10) = 50

Virtual Runtime Thread B = AR(TOTAL/W) = 10(100/11) = 90.9

Since VR(A) < VR(B) Thread A will run next.

KL
Text Box
See Scheduling slides 21-23.

Long-running, non-interactive computation threads that do not block will filter down
to the lowest priority queue in the multi-level feedback queue scheduling
algorithm. If there are significantly more high-priority and blocking threads
running, these lower priority threads may not run. How does the multi-level
feedback queue method ensure these threads do not starve?

Long-running, non-interactive computation threads that do not block will filter down
to the lowest priority queue in the multi-level feedback queue scheduling
algorithm. If there are significantly more high-priority and blocking threads
running, these lower priority threads may not run. How does the multi-level
feedback queue method ensure these threads do not starve?

Periodically takes all threads in all queues and puts them into the highest-priority
queue.

Solaris does this once per second.

KL
Text Box
Scheduling Slide 10.

What are the three primary types of device registers?

What are the three primary types of device registers?

1. Command
2. Status
3. data

KL
Text Box
See Devices and I/O slide 3.

A prankster placed an easter egg in a major OS. If you type “this os sucks” at the
command prompt a kernel-privilege program executes and V’s every semaphore
in the kernel exactly once. Does the program succeed in V’ing every semaphore,
or, does it panic when it tries to V? Why?

A prankster placed an easter egg in a major OS. If you type “this os sucks” at the
command prompt a kernel-privilege program executes and V’s every semaphore
in the kernel exactly once. Does the program succeed in V’ing every semaphore,
or, does it panic when it tries to V? Why?

The code succeeds in V’ing every semaphore because semaphores do not
store/check if the thread that P’d is the thread that V’d.

KL
Text Box
See Sychronization slides 28, 32.9

A device driver writes some data to a data register and then writes to a command
register. When the device is done the requested operation the OS needs to
acknowledge the completion before any other threads can use the device. Give
the pseudocode for the driver and handler.

A device driver writes some data to a data register and then writes to a command
register. When the device is done the requested operation the OS needs to
acknowledge the completion before any other threads can use the device. Give
the pseudocode for the driver and handler.
Driver

 P(device semaphore)

 Write to data register

 Write to command register

Handler

 Acknowledge completion to device

 V(device semaphore)

KL
Text Box
See slide 7 in Devices and I/O.

On-demand paging only loads program data into the address space when it is
needed. When is this detected?

If we use the Clock Replacement Algorithm for pages, what must the kernel do
when choosing a victim?

On-demand paging only loads program data into the address space when it is
needed. When is this detected?

If we use the Clock Replacement Algorithm for pages, what must the kernel do
when choosing a victim?

● Detected on TLB miss

● Until a victim is found (an entry whose use bit is not set); kernel sets the use
bit of non-victims to 0

KL
Text Box
We only mentioned on-demand paging briefly this term, Virtual Memory slides 42 and 53. You could have a bit in each page table entry to track if the page has been loading into RAM or not.

KL
Text Box
See line 2 of the pseudocode on Virtual Memory slide 59.

A system uses 48bit virtual addresses and 64bit physical addresses. Pages are
64kb (2^16) in size.

1. What is the maximum size of physical and virtual memory?
2. How many pages are there in virtual memory? How many frames in physical

memory?
3. How many bits are needed for the page offset?
4. If a PTE is 16 bytes (2^4), how many fit on a page?
5. How many levels are needed for the multi-level page table if each table must

fit onto a page?

A system uses 48bit virtual addresses and 64bit physical addresses. Pages are
64kb (2^16) in size.

1. What is the maximum size of physical and virtual memory?

2^64 bytes, 2^48 bytes

2. How many pages are there in virtual memory? How many frames in physical memory?

Pages = 2^48/2^16 = 2^32; Frames = 2^64/2^16 = 2^48

3. How many bits are needed for the page offset? 16
4. If a PTE is 16 bytes (2^4), how many fit on a page? 2^16/2^4 = 2^12
5. How many levels are needed for the multi-level page table if each table must fit onto a page?

(48-16)/12 = 32/12 -> 3 levels [8 bit directory index][12 bit page index][12 bit page index][16 bit
offset]

KL
Text Box
See slide 2 of Virtual Mem.

KL
Text Box
See slide 20.1 of Virtual Mem

KL
Text Box
See slide 16 of Virtual Mem.

KL
Text Box
See slide 31 of Virtual Mem.

KL
Text Box
This is from a class exercise but take
(number of bit in a virtual address) - (the bits on the offset) = bits for page number
 ceiling ((bits for page number) / (PTE per page)) = levels, small one directory, rest page tables

