File Systems

file, directory, link, open/close, descriptor, read,

write, seek, file naming, block, i-node, crash consistency,
journaling

Rob Hackman, Kevin Lanctot

David R. Cheriton School of Computer Science
University of Waterloo

Fall 2022

1/40

Files and File Systems

m files: persistent, named data objects

m data consists of a sequence of numbered bytes

m file may change size over time

m file has associated meta-data (e.g., type, timestamp, access
controls)

m file systems: the data structures and algorithms used to
store, retrieve, and access files

m logical file system: high-level API, what a user sees

m virtual file system: abstraction of lower level file systems,
presents multiple different underlying file systems to the user
as one

m physical file system: how files are actually stored on physical
media

2 /40

File Interface: Basics

m open
m open returns a file identifier (or handle or descriptor), which
is used in subsequent operations to identify the file.
m other operations (e.g., read, write) require file descriptor as a
parameter

m close

m kernel tracks while file descriptors are currently valid for each
process
m close invalidates a valid file descriptor

m read, write, seek

m read copies data from a file into a virtual address space
m write copies data from a virtual address space into a file
m seek enables non-sequential reading/writing

m get/set file meta-data, e.g., Unix fstat, chmod, 1ls -la

3/40

File Position and Seeks

m each file descriptor (open file) has an associated file position
m the position starts at byte 0 when the file is opened

m read and write operations
m start from the current file position
m update the current file position as bytes are read /written

m this makes sequential file 1/O easy for an application to

request
m secks (1seek) are used for achieve non-sequential file 1/0

m 1seek changes the file position associated with a descriptor
m next read or write from that descriptor will use the new
position

4/40

Sequential File Reading Example

char buf[512];
int 1i;
int £ = open("myfile",0_RDONLY) ;
for(i=0; i<100; i++) {
read(f, (void *)buf,512);

}

close(f);

Read the first 100 * 512 bytes of a file, 512 bytes at a time.

5/40

File Reading Example Using Seek

char buf[512];
int i;
int f = open("myfile",0_RDONLY);
for(i=1; i<=100; i++) {
lseek(f, (100-1)*512,SEEK_SET) ;
read(f, (void *)buf,512);

}

close(f);

s)

Read the first 100+ 512 bytes of a file, 512 bytes at a time, in reverse
order.

1seek does not modify the file. It also does not check if the new file
position is valid (i.e., in the file). It will not return an error or throw
an exception if the position is invalid. However, the subsequent read
or write operation will.

6 /40

Directories and File Names

m A directory maps file names (strings) to i-numbers
m an i-number is a unique (within a file system) identifier for a
file or directory
m given an i-number, the file system can find the data and
meta-data for the file
m Directories provide a way for applications to group related files
m Since directories can be nested, a filesystem's directories can
be viewed as a tree, with a single root directory.
m In a directory tree, files are leaves
m Files may be identified by pathnames, which describe a path
through the directory tree from the root directory to the file,
e.g.
/home/user/courses/cs350/notes/filesys.pdf
m Directories also have pathnames
m Applications refer to files using pathnames, not i-numbers

Only the kernel is permitted to edit directories. Why?

7/40

Hierarchical Namespace Example

145

private

testprog misc b.doc

425 149

Key
@ = directory
12 L] =file

234 =i—number

334

/docs/b.doc is the path for file 149.

8/40

Links

a hard link is an association between a name (string) and an

i-number
m each entry in a directory is a hard link

when a file is created, so is a hard link to that file
m open(/foo/misc/biz,0_CREAT|O0_TRUNC)

m this creates a new file if a file called /foo/misc/biz does not

already exist

m it also creates a hard link to the file in the directory /foo/misc
Once a file is created, additional hard links can be made to

It.

m example: 1ink(/docs/a.txt,/foo/myA) creates a new hard
link myA in directory /foo. The link refers to the i-number of

file /docs/a.txt, which must exist.

linking to an existing file creates a new pathname for that file

m each file has a unique i-number, but may have multiple
pathnames

Not possible to 1ink to a directory (to avoid cycles)

9/40

Hierarchical Namespace Example

145

private

testprog misc b.doc

425 149

Key
@ =directory
12 [=file

234 = i—number

334

/foo/myA and /docs/a.txt are two different paths to the same file,
number 147.

10 /40

Unlinking

m hard links can be removed:
m unlink(/docs/b.doc)
m this removes the link b.doc from the directory /docs
m when the last hard link to a file is removed, the file is also
removed

m since there are no links to the file, it has no pathname, and
can no longer be opened

11 /40

Multiple File Systems

m it is not uncommon for a system to have multiple file systems

m some kind of global file namespace is required

m two examples:
DOS/Windows: use two-part file names: file system name,
pathname within file system
m example: C:\user\cs350\schedule.txt
Unix: create single hierarchical namespace that combines the
namespaces of two file systems
m Unix mount system call does this

m mounting does not make two file systems into one file system

m it merely creates a single, hierarchical namespace that
combines the namespaces of two file systems

m the new namespace is temporary - it exists only until the file
system is unmounted

12 /40

Unix mount Example _

"root" file system file system X
a r
9

13 /40

File System Implementation

m what needs to be stored persistently?
m file data
m file meta-data
m directories and links
m file system meta-data
m non-persistent information
m per process open file descriptor table
m file handle
m file position
m system wide:

m open file table
m cached copies of persistent data

14 / 40

File System Example

m Use an extremely small disk as an example:
m 256 KB disk!
m Most disks have a sector size of 512 bytes
m Memory is usually byte addressable
m Disk is usually “sector addressable”
m 512 total sectors on this disk
m Group every 8 consecutive sectors into a block
m Better spatial locality (fewer seeks)
m Reduces the number of block pointers (we'll see what this
means soon)
m 4 KB block is a convenient size for demand paging
m 64 total blocks on this disk

15 / 40

VSFS: Very Simple File System (1 of 5)

m Most of the blocks should be for storing user data (last 56

blocks)
) Data Region)
[DIDIDDIDD[DID] [DD[DD[D[DDID] DIDD[DD[DD]D]
0 7 8 15 16 23 24 31
Data Region)
(DIDIDDIDIDIDID] [DIDIDIDIDIDIDID] [DIDIDIDIDIDIDID]
32 39 40 47 48 55 56 63

16 /40

VSFS: Very Simple File System (2 of 5)

m Need some way to map files to data blocks

m Create an array of i-nodes, where each i-node contains the
meta-data for a file

m The index into the array is the file's index number (i-number)

m Assume each i-node is 256 bytes, and we dedicate 5 blocks for
i-nodes

m This allows for 80 total i-nodes/files

, Inodes o Data Region :
ED:_ fﬁlﬁfﬁfﬁfmﬁfﬁfﬁl [DIDIDID[D[D[D[D] [DIDIDID[D[D[D[D]
15 16 23 24 31

Data Region

DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD

17 / 40

VSFS: Very Simple File System (3 of 5)

m We also need to know which i-nodes and blocks are unused

m Many ways of doing this:
m In VSFS, we use a bitmap for each (i, d)
m Can also use a free list instead of a bitmap
m A block size of 4 KB means we can track 32K i-nodes and
32K blocks, since one bit is used to track each i-node or block
m This is far more than we actually need for this disk

, Inodes r Data Region
\:_DDDDDDDD DIDIDIDIDIDIDID DDDDDDDD
15 16 23 24
Data Region
[DIDDIDIDIDIDID] [DID[DDIDDIDID] DID[DDID[DDD]
32 39 40 47 48 55 56 63

18 / 40

VSFS: Very Simple File System (4 of 5)

m Reserve the first block as the superblock
m A superblock contains meta-information about the entire file

system
m e.g., how many i-nodes and blocks are in the system, where

the i-node table begins, etc.

__Inodes | Data Region)
[DIDIDIDDIDIDID] DID[D[D[DID[DID] [DID[D[D[DID[DID]
0 7 8 15 16 23 24 31

Data Region)
[DIDIDIDIDIDIDID] [(DIDID[DIDIDIDID]
32 39 40 47 48 55 56 63

19 / 40

VSFS: Very Simple File System (5 of 5)

The Inode Table (Closeup)
i iblock 0 | iblock 1 | iblock2 i iblock3 i iblock 4

' I ' '

1|2|3|16|17(18|19|32(33|34|35|48(49|50|51(64 (65|66 67
5|67 [20|21|22(23|36|37 (38|39 (52|53|54 (55|68|69(70|71
9 [10(11(24|25|26 (27 |40|41(42|43 |56 |57 |58(59|72|73 (74|75
13(14|15|28|29(30(31|44(45|46|47|60|61(62|63|76(77 78|79

8KB 12KB 16KB 20KB 24KB 28KB 32KB

20 /40

i-nodes

m An i-node is a fixed size index structure that holds both file

meta-data and a small number of pointers to data blocks

m i-node fields may include:

file type

file permissions

file length

number of file blocks

time of last file access

time of last i-node update, last file update

number of hard links to this file

direct data block pointers

single, double, and triple indirect data block pointers

21/40

i-node Diagram

i—node (not to scale!)

attribute values

direct
direct
direct

single indirect

double indirect

triple indirect

indirect blocks

data blocks

22 /40

VSFES: i-node

Assume disk blocks can be referenced based on a 4 byte
address

m 232 blocks, 4 KB blocks
m Maximum disk size is 16 TB

m In VSFS, an i-node is 256 bytes

m Assume there is enough room for 12 direct pointers to blocks

m Each pointer points to a different block for storing user data

m Pointers are ordered: first pointer points to the first block in
the file, etc.

m What is the maximum file size if we only have direct pointers?

m 12 *4 KB = 48 KB

Great for small files (which are common)

Not so great if you want to store big files

23 /40

VSFS: Indirect Blocks

m In addition to 12 direct pointers, we can also introduce an
indirect pointer
m An indirect pointer points to a block full of direct pointers
m 4 KB block of direct pointers = 1024 pointers
m Maximum file size is: (12 + 1024) * 4 KB = 4144 KB

m This is more than enough for any file that can fit on our tiny
256KB disk, but what if the disk was larger?
Add a double indirect pointer

m Points to a 4 KB block of indirect pointers
m (12 + 1024 + 1024 * 1024) * 4 KB
m Just over 4 GB in size (is this enough?)

m Still not enough? use a triple indirect pointer

24 / 40

Reading from a File (/foo/bar)

First, the root i-node is read.

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
open(bar) | | read [

root’s i-node will provide the position of root’s data, which is where
the links are stored.

25 / 40

Reading from a File (/foo/bar)

root's data is read to find the link to foo.

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]

open(bar) ‘ ‘ read

read

In this example, we assume that the directory links fit into a single
block.

26 / 40

Reading from a File (/foo/bar) _

foo’s i-node is read next, providing the location of foo's data.

data inode root foo bar root foo bar bar bar
operation bitmap bitmap | inode inode inode | data data data[0] data[l] data[2]
open(bar) read
read
read

27 /40

Reading from a File (/foo/bar)

foo's data is read to find bar’s link.

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] datal[2]
open(bar) read
read
read
read

Again, for this example we assume that the links contained in direc-
tory foo fit into a single block. This may not always be true.

28 /40

Reading from a File (/foo/bar)

bar's i-node is read
the permissions are checked

a file descriptor is returned and added to the processes's file
descriptor table

the file is added to the kernel's list of open files

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
open(bar) read

read
read
read
read

The file is now open and ready for reads and writes. The position of
the file is byte 0. Opening this file required 5 disk reads!

29 /40

Reading from a File (/foo/bar)

Reading data from /foo/bar, one block at a time.
bar's i-node is read
a pointer to the correct data block is found

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] datal[2]
open(bar) read
read
read
read

read

read() read

If bar’s i-node is not in the i-node cache, it must be read from disk.

30 /40

Reading from a File (/foo/bar)

the data block for /foo/bar is read

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] datal[2]
open(bar) read
read
read
read

read

read() read
read

31 /40

Reading from a File (/foo/bar)

bar’s i-node is written to update the access time

data inode root foo bar root foo bar bar bar
operation bitmap bitmap | inode inode inode | data data data[0] data[l] data[2]
open(bar) read
read
read
read

read

read() read
read
write

32 /40

Reading from a File (/foo/bar)

Two more data blocks are read.
data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
open(bar) read
read
read
read
read
read() read
read
write
read() read
read
write
read() read
read
write

Even if the user wants a single byte out of the middle of a block, the
entire block must be read. Disks typically do not permit byte-based
addressing, only block or sector addressing.

33 /40

Creating a File (/foo/bar)

data inode root foo bar root foo bar bar bar
operation bitmap bitmap inode inode inode data data data[0] data[1] data[2]
create(bar) read
read
read
read
read
write
write
read
write
write
write() read
read
write
write
write
write() read
read
write
write
write
write() read
read
write
write
write

When writing a partial block, that block must be read first. When

writing an entire block, no read is required.

34 /40

Chaining

m VSFS uses a per-file index (direct and indirect pointers) to
access blocks
m Two alternative approaches:
m Chaining:
m Each block includes a pointer to the next block
m External chaining;:

m The chain is kept as an external structure
m Microsoft’s File Allocation Table (FAT) uses external chaining

35 /40

m Directory table contains the name of the file, and each file's
starting block

m Acceptable for sequential access, very slow for random access
(why?)

36 /40

External Chaining _

m Introduces a special file access table that specifies all of the
file chains

% external chain
= [2 (file access table)

37 /40

File System Design

m File system parameters:

m How many i-nodes should a file system have?
m How many direct and indirect blocks should an i-node have?
m What is the “right” block size?

m For a general purpose file system, design it to be efficient for
the common case
m most files are small, 2KB
average file size growing
on average, 100 thousand files
typically small directories (contain few files)
even as disks grow large, the average file system usage is 50%

What about exceptional cases?
What if the files were mostly large, 50GB minimum?
What if each file is less than 1KB?

38 /40

Problems Caused by Failures

m a single logical file system operation may require several disk
[/O operations
m example: deleting a file
m remove entry from directory
m remove file index (i-node) from i-node table
m mark file's data blocks free in free space index
m what if, because of a failure, some but not all of these
changes are reflected on the disk?

m system failure will destroy in-memory file system structures

m persistent structures should be crash consistent, i.e., should
be consistent when system restarts after a failure

39 /40

Fault Tolerance

m special-purpose consistency checkers (e.g., Unix fsck in
Berkeley FFS, Linux ext2)
m runs after a crash, before normal operations resume
m find and attempt to repair inconsistent file system data
structures, e.g.:
m file with no directory entry
m free space that is not marked as free
m journaling (e.g., Veritas, NTFS, Linux ext3), write-ahead
logging
m record file system meta-data changes in a journal (log), so that
sequences of changes can be written to disk in a single
operation
m after changes have been journaled, update the disk data
structures (write-ahead logging)
m after a failure, redo journaled updates in case they were not
done before the failure

40 / 40

