
Devices and I/O
key concepts: device registers, device drivers,

program-controlled I/O, DMA, polling, disk drives, disk head
scheduling

Rob Hackman, Kevin Lanctot

David R. Cheriton School of Computer Science
University of Waterloo

Fall 2022

1 / 27



Devices

devices are how a computer receives input and produces
output

a keyboard is an input device
a printer is an output device
a touch screen is both input and output

sys/161 example devices:

timer/clock - current time, timer, beep
disk drive - persistent storage
serial console - character input/output
text screen - character-oriented graphics
network interface - packet input/output

keyboards, mice, printers, graphics cards, USB fans, joysticks, key-
loggers, CD drives, card readers, sound cards, ... are all devices

2 / 27



Terminology

bus: a communication pathway between various devices in a
computer

internal bus: memory bus or front side bus is for
communication between the CPU and RAM. It is fast and
close to the CPU(s).
peripheral: or expansion bus, allows devices in the computer
to communicate

bridge: connects two different buses

3 / 27



Device Register Example: Sys/161 timer/clock

communication with devices carried out through device
registers

three primary types of device registers

status: tells you something about the device’s current state.
Typically, a status register is read.
command: issue a command to the device by writing a
particular value to this register.
data: used to transfer larger blocks of data to/from the device.

some device registers are combinations of primary types

a status and command register is read to discover the
device’s state and written to issue the device a command.

4 / 27



Device Register Example: Sys/161 timer/clock

Offset Size Type Description

0 4 status current time (seconds)
4 4 status current time (nanoseconds)
8 4 command restart-on-expiry

12 4 status and command interrupt (reading clears)
16 4 status and command countdown time (microseconds)
20 4 command speaker (causes beeps)

The clock is used in preemptive scheduling.

5 / 27



Device Register Example: Serial Console

Offset Size Type Description

0 4 command and data character buffer
4 4 status writeIRQ
8 4 status readIRQ

If a write is in progress, the device exhibits undefined behaviour if
another write is attempted.

6 / 27



Device Drivers

a device driver is a part of the kernel that interacts with a
device
example: write character to serial output device
// only one writer at a time

P(output device write semaphore)

// trigger the write operation

write character to device data register

repeat {
read writeIRQ register

} until status is ‘‘completed’’

// make the device ready again

write writeIRQ register to ack completion

V(output device write semaphore)

this example illustrates polling: the kernel driver repeatedly
checks device status

Although the majority of device drivers are a (dynamically loadable)
part of the kernel, some drivers exist in user-space.

7 / 27



Using Interrupts to Avoid Polling

Device Driver Write Handler:

// only one writer at a time

P(output device write semaphore)

// trigger write operation

write character to device data register

Interrupt Handler for Serial Device:

// make the device ready again

write writeIRQ register to ack completion

V(output device write semaphore)

8 / 27



Accessing Devices

how can a device driver access device registers?

Option 1: Port-Mapped I/O with special I/O instructions

device registers are assigned “port” numbers, which correspond
to regions of memory in a separate, smaller address space
special I/O instructions, such as in and out instructions on
x86 are used to transfer data between a specified port and a
CPU register

Option 2: memory-mapped I/O
each device register has a physical memory address
device drivers can read from or write to device registers using
normal load and store instructions, as though accessing
memory

A system may use both port-mapped and memory-mapped I/O.

9 / 27



MIPS/OS161 Physical Address Space

RAM

devices: 0x1FE00000 − 0x1FFFFFFF

ROM: 0x1FC00000 − 0x1FDFFFFF

0x00000000 0xFFFFFFFF

0x1FE00000 0x1FFFFFFF

64 KB device "slot"

Each device is assigned to one of 32 64KB device “slots”. A device’s
registers and data buffers are memory-mapped into its assigned slot.

10 / 27



Large Data Transfer To/From Devices

In addition to port and memory mapped I/O, large data blocks can
be transferred using other strategies.

program-controlled I/O
The device driver moves the data between memory and a buffer on the device.

The CPU is busy while the data is being transferred.

direct memory access (DMA)
The device itself is responsible for moving data to/from memory. CPU is not

busy during this data transfer, and is free to do something else.

CPU

memory disk

1

2

3

Sys/161 disks do program-controlled I/O.

11 / 27



Persistant Storage Devices

persistant storage is any device where data persists even
when the device is without power

physical memory is not persistant
a hard disk is persistant
also referred to as non-volatile

persistant storage comes in many forms
punched cards of metal or paper (1700s-1970s)
magnetic drums (1930s-1960s), tapes (1920s)
floppy (1970s-2000s) and hard disks (1950s)
CDs (1980s), DVDs (1990s), Blu-ray (2000s)
solid state memory (1970s, 1990s)
ReRam (resistive RAM) (2000s)

The earliest form of persistant storage was punched metal cards
which held the ”programs” for Jacquard weaving looms in the 1700s.

Magnetic tapes are still in active use today!

12 / 27



Hard Disks

commonly used persistant storage device
a number of spinning, ferromagnetic-coated platters
read/written by a moving R/W head

platter

spindleread/write head

Platters are typially made from glass or porcelain. Hence, they are
exceptionally fragile.

Often called mechanical disks, both patter and read/write head must
move to perform a read or write operation. This motion is costly.

13 / 27



Logical View of a Disk Drive

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

28

29

30

31

32

33

34

35

36

37

38

39

seek
tracks

sectors

read/write head

arm

rotation disk is an array of numbered
blocks (or sectors)

each block is the same size
(e.g., 512 bytes)

blocks are the unit of
transfer between the disk
and memory

typically, one or more
contiguous blocks can be
transferred in a single
operation

assume, for simplicity, that
each track contains the
same number of sectors

14 / 27



Cost Model for Disk I/O

moving data to/from a disk involves:
1 seek time: move the read/write heads to the appropriate

track

depends on seek distance, the distance (in tracks) between
previous and current request
value: 0 milliseconds to cost of max seek distance

2 rotational latency: wait until the desired sectors spin to the
read/write heads

depends on rotational speed of disk
disk is always spinning
value: 0 milliseconds to cost of single rotation

3 transfer time: wait while the desired sectors spin past the
read/write heads

depends on the rotational speed of the disk and the amount of
data accessed

Request Service Time = Seek Time + Rotational Latency +
Transfer Time

15 / 27



Request Service Time Example

A disk has a total capacity of 232 bytes. The disk has a single
platter with 220 tracks. Each track has 28 sectors. The disk
operates at 10000RPM and has a maximum seek time of 20
milliseconds.

1 How many bytes are in a track?
BytesPerTrack = DiskCapacity/NumTracks

2 How many bytes are in a sector?
BytesPerSector = BytesPerTrack/NumSectorsPerTrack

3 What is the maximum rotational latency?
MaxLatency = 60/RPM

4 What is the average seek time and rotational latency?
AverageSeek = MaxSeek/2
AverageLatency = MaxLatency/2

5 What is the cost to transfer 1 sector?
SectorLatency = MaxLatency/NumSectorsPerTrack

6 What is the expected cost to read 10 consecutive sectors from this
disk?
RequestServiceTime = Seek + RotationalLatency + TransferTime16 / 27



Request Service Time Example

A disk has a total capacity of 232 bytes. The disk has a single
platter with 220 tracks. Each track has 28 sectors. The disk
operates at 10000RPM and has a maximum seek time of 20
milliseconds.

1 How many bytes are in a track?
= 232/220 = 212 bytes per track

2 How many bytes are in a sector?
= 212/28 = 24 bytes per sector

3 What is the maximum rotational latency?
= 60/10000 = 0.006 or 6 milliseconds

4 What is the average seek time and rotational latency?
= 20/2 = 10 milliseconds average seek time
= 6/2 = 3 milliseconds average rotational latency

5 What is the cost to transfer 1 sector?
= 6/28 = 6/256 = 0.0195 milliseconds per sector

6 What is the expected cost to read 10 consecutive sectors from this disk?
= 10 + 3 + 10(0.0195) = 13.195 milliseconds
Note that since we do not know the position of the head, or the platter, we use
the average seek and average rotational latency.

17 / 27



Performance Implications of Disk Characteristics

larger transfers to/from a disk device are more efficient than
smaller ones. That is, the cost (time) per byte is smaller for
larger transfers. (Why?)

sequential I/O is faster than non-sequential I/O

sequential I/O operations eliminate the need for (most) seeks

while sequential I/O is not always possible, we can group
requests to try and reduce average request time

Historically, seek time is the dominating cost. High-end drives can
have maximum seek times around 4 milliseconds. Consumer grade
drives more commonly have seek times between 9 and 12 millisec-
onds.

18 / 27



Disk Head Scheduling

goal: reduce seek times by controlling the order in which
requests are serviced
disk head scheduling may be performed by the device, by the
operating system, or both
for disk head scheduling to be effective, there must be a
queue of outstanding disk requests (otherwise there is nothing
to reorder)
first-come, first served is fair and simple, but offers no
optimization for seek times

1 50 100 200150

14 37 53 65 70 122 130 183

arrival order: 183 37 122 14 130 65 70

head

104

104

19 / 27



Shortest Seek Time First (SSTF)

choose closest request (a greedy approach)

seek times are reduced, but requests may starve

1 50 100 200150

14 37 53 65 70 122 130 183

arrival order: 183 37 122 14 130 65 70

head

104

104

20 / 27



Elevator Algorithms (SCAN)

Under SCAN, aka the elevator algorithm, the disk head moves
in one direction until there are no more requests in front of it,
then reverses direction.
there are many variations on this idea
SCAN reduces seek times (relative to FCFS), while avoiding
starvation

1 50 100 200150

14 37 53 65 70 122 130 183

arrival order: 183 37 122 14 130 65 70

head

104

104

21 / 27



Device Register Example: Sys/161 disk controller

Offset Size Type Description

0 4 status number of sectors

4 4 status and command status

8 4 command sector number

12 4 status rotational speed (RPM)

32768 512 data transfer buffer

22 / 27



Writing to a Sys/161 Disk

Device Driver Write Handler:

// only one disk request at a time

P(disk semaphore)

copy data from memory to device transfer buffer

write target sector number to disk sector number register

write ‘‘write’’ command to disk status register

// wait for request to complete

P(disk completion semaphore)

V(disk semaphore)

Interrupt Handler for Disk Device

// make the device ready again

write disk status register to ack completion

V(disk completion semaphore)

The thread that initiates the write should wait until that write is
completed before continuing.

23 / 27



Reading From a Sys/161 Disk

Device Driver Read Handler:

// only one disk request at a time

P(disk semaphore)

write target sector number to disk sector number register

write ‘‘read’’ command to disk status register

// wait for request to complete

P(disk completion semaphore)

copy data from device transfer buffer to memory

V(disk semaphore)

Interrupt Handler for Disk Device

// make the device ready again

write disk status register to ack completion

V(disk completion semaphore)

The thread that initiates the read must wait until that read is
completed before continuing.

24 / 27



Solid State Drives(SSD)

no mechanical parts; use integrated circuits for persistant
storage instead of magnetic surfaces

variety of implementations

DRAM: requires constant power to keep values
Flash Memory: traps electrons in quantum cage

logically divided into blocks and pages

2, 4 or 8KB pages
32KB-4MB blocks

reads/writes at page level

pages are initialized to 1s; can transition 1 → 0 at page level
(i.e., write new page)
a high voltage is required to switch 0 → 1 (i.e.,
overwrite/delete page)
cannot apply high voltage at page level, only to blocks

overwriting/deleting data must be done at the block level

25 / 27



Writing and Deleting from Flash Memory

Naive Solution (slow):
read whole block into memory
re-initialize block (all page bits back to 1s)
update block in memory; write back to SSD

SSD controller handles requests (faster):
mark page to be deleted/overwritten as invalid
write to an unused page
update translation table
requires garbage collection

Each block of an SSD has a limited number of write cycles before
it becomes read-only. SSD controllers perform wear leveling, dis-
tributing writes evenly across blocks, so that the blocks wear down
at an even rate.
Hence, defragmentation, which takes files spread across multiple,
non-sequential pages and makes them sequential, can be harmful to
the lifespan of an SSD. Additionally, since there are no moving parts,
defragmentation serves no performance advantage.

26 / 27



Persistent RAM

values are persistant in the absence of power

ReRAM: resistive RAM
3D XPoint, Intel Optane

can be used to improve the performance of secondary storage

traditional CPU caches are small; not effective for caching
many disk blocks
RAM can cache i-nodes and data blocks; but should be used
for address spaces
use persistant RAM instead

i-nodes and data blocks silently cached to this special memory
Intel Optane, for example, modules are 16-32GB, so many
blocks can be cached giving big performance improvements
when mechanical disks are used

27 / 27


