Devices and /O

device registers, device drivers,

program-controlled 1/0, DMA, polling, disk drives, disk head
scheduling

Rob Hackman, Kevin Lanctot

David R. Cheriton School of Computer Science
University of Waterloo

Fall 2022

1/27

Devices

m devices are how a computer receives input and produces
output

m a keyboard is an input device
m a printer is an output device
m a touch screen is both input and output

m sys/161 example devices:

timer/clock - current time, timer, beep
m disk drive - persistent storage

m serial console - character input/output
m text screen - character-oriented graphics
m network interface - packet input/output

keyboards, mice, printers, graphics cards, USB fans, joysticks, key-
loggers, CD drives, card readers, sound cards, ... are all devices

2 /27

Terminology

m bus: a communication pathway between various devices in a
computer
m internal bus: memory bus or front side bus is for
communication between the CPU and RAM. It is fast and
close to the CPU(s).
m peripheral: or expansion bus, allows devices in the computer
to communicate

m bridge: connects two different buses

3 /27

Device Register Example: Sys/161 timer/clock

m communication with devices carried out through device
registers
m three primary types of device registers

m status: tells you something about the device's current state.
Typically, a status register is read.

m command: issue a command to the device by writing a
particular value to this register.

m data: used to transfer larger blocks of data to/from the device.

m some device registers are combinations of primary types

m a status and command register is read to discover the
device's state and written to issue the device a command.

4 /27

Device Register Example: Sys/161 timer/clock

Offset | Size Type Description
0 4 status current time (seconds)
4 4 status current time (nanoseconds)
8 4 command restart-on-expiry
12 4 | status and command | interrupt (reading clears)
16 4 status and command | countdown time (microseconds)
20 4 command speaker (causes beeps)

The clock is used in preemptive scheduling.

5 /27

Device Register Example: Serial Console

Offset | Size Type Description
0 4 command and data | character buffer
4 4 status writelRQ
8 4 status readlRQ

If a write is in progress, the device exhibits undefined behaviour if

another write is attempted.

6 /27

Device Drivers

m a device driver is a part of the kernel that interacts with a

device
m example: write character to serial output device

// only one writer at a time
P(output device write semaphore)
// trigger the write operation
write character to device data register
repeat {
read writeIRQ register
} until status is ¢ ‘completed’’
// make the device ready again
write writeIRQ register to ack completion
V(output device write semaphore)

m this example illustrates polling: the kernel driver repeatedly
checks device status

Although the majority of device drivers are a (dynamically loadable)
part of the kernel, some drivers exist in user-space.

7/27

Using Interrupts to Avoid Polling

Device Driver Write Handler:

// only one writer at a time

P(output device write semaphore)

// trigger write operation

write character to device data register

Interrupt Handler for Serial Device:

// make the device ready again
write writeIRQ register to ack completion
V(output device write semaphore)

8 /27

Accessing Devices

m how can a device driver access device registers?

m Option 1: Port-Mapped 1/0 with special I/O instructions

m device registers are assigned “port” numbers, which correspond
to regions of memory in a separate, smaller address space

m special 1/0 instructions, such as in and out instructions on
x86 are used to transfer data between a specified port and a
CPU register

m Option 2: memory-mapped 1/0

m each device register has a physical memory address

m device drivers can read from or write to device registers using
normal load and store instructions, as though accessing
memory

A system may use both port-mapped and memory-mapped 1/O.

9 /27

MIPS/0OS161 Physical Address Space

0x00000000 OXFFFFFFFF
RAM

ROM: 0xTFC00000 — Ox1FDFFFFF
devices: 0x1FE00000 — Ox1FFFFFFF

<

i
-
-
- -
-
-
-
- -
-
- .
-
-
- -
-
-
-
-
.

64 KB device "slot"
0x1FE00000 Ox1FFFFFFF

Each device is assigned to one of 32 64KB device “slots”. A device's
registers and data buffers are memory-mapped into its assigned slot.

10 /27

Large Data Transfer To/From Devices

In addition to port and memory mapped |/O, large data blocks can
be transferred using other strategies.
m program-controlled 1/0
The device driver moves the data between memory and a buffer on the device.
The CPU is busy while the data is being transferred.
m direct memory access (DMA)
The device itself is responsible for moving data to/from memory. CPU is not

busy during this data transfer, and is free to do something else.

CPU

memory disk

Sys/161 disks do program-controlled 1/0.

11 /27

Persistant Storage Devices

m persistant storage is any device where data persists even
when the device is without power

m physical memory is not persistant

m a hard disk is persistant

m also referred to as non-volatile
m persistant storage comes in many forms

m punched cards of metal or paper (1700s-1970s)
magnetic drums (1930s-1960s), tapes (1920s)
floppy (1970s-2000s) and hard disks (1950s)
CDs (1980s), DVDs (1990s), Blu-ray (2000s)
solid state memory (1970s, 1990s)
ReRam (resistive RAM) (2000s)

The earliest form of persistant storage was punched metal cards
which held the " programs” for Jacquard weaving looms in the 1700s.

Magnetic tapes are still in active use today!

12 /27

Hard Disks

m commonly used persistant storage device
m a number of spinning, ferromagnetic-coated platters
read /written by a moving R/W head

read/write head spindle

| — 5
= platter

Platters are typially made from glass or porcelain. Hence, they are
exceptionally fragile.

Often called mechanical disks, both patter and read /write head must
move to perform a read or write operation. This motion is costly.

13 /27

Logical View of a Disk Drive

4——— rotation m disk is an array of numbered

tracks blocks (or sectors)

m each block is the same size
(e.g., 512 bytes)

m blocks are the unit of
transfer between the disk
and memory

m typically, one or more
contiguous blocks can be
transferred in a single
operation

m assume, for simplicity, that
read/write head each track contains the
same number of sectors

14 /27

Cost Model for Disk I/O

m moving data to/from a disk involves:

seek time: move the read/write heads to the appropriate
track

m depends on seek distance, the distance (in tracks) between
previous and current request
m value: 0 milliseconds to cost of max seek distance

rotational latency: wait until the desired sectors spin to the
read /write heads

m depends on rotational speed of disk
m disk is always spinning
m value: 0 milliseconds to cost of single rotation

transfer time: wait while the desired sectors spin past the
read /write heads

m depends on the rotational speed of the disk and the amount of
data accessed

m Request Service Time = Seek Time + Rotational Latency +
Transfer Time

15 / 27

Request Service Time Example

A disk has a total capacity of 232 bytes. The disk has a single
platter with 220 tracks. Each track has 28 sectors. The disk
operates at 10000RPM and has a maximum seek time of 20
milliseconds.

How many bytes are in a track?
BytesPerTrack = DiskCapacity / Num Tracks

How many bytes are in a sector?
BytesPerSector = BytesPerTrack / NumSectorsPerTrack

What is the maximum rotational latency?
MaxLatency = 60/ RPM

What is the average seek time and rotational latency?
AverageSeek = MaxSeek /2
Averagelatency = MaxLatency /2

What is the cost to transfer 1 sector?
SectorLatency = MaxLatency / NumSectorsPer Track

@ What is the expected cost to read 10 consecutive sectors from this
disk?
RequestServiceTime = Seek + RotationalLatency + TransferTimg g /27

Request Service Time Example

A disk has a total capacity of 232 bytes. The disk has a single

platter with 220 tracks. Each track has 28 sectors. The disk
operates at 10000RPM and has a maximum seek time of 20
milliseconds.

How many bytes are in a track?
= 232 /220 — 212 pytes per track

How many bytes are in a sector?
= 212 /28 — 24 bytes per sector

= 60/10000 = 0.006 or 6 milliseconds

What is the average seek time and rotational latency?
= 20/2 = 10 milliseconds average seek time
= 6/2 = 3 milliseconds average rotational latency

What is the maximum rotational latency?

What is the cost to transfer 1 sector?
=6/28 = 6/256 = 0.0195 milliseconds per sector

What is the expected cost to read 10 consecutive sectors from this disk?
=10+ 3 + 10(0.0195) = 13.195 milliseconds

Note that since we do not know the position of the head, or the platter, we use
the average seek and average rotational latency.

B &

17 /27

Performance Implications of Disk Characteristics

m larger transfers to/from a disk device are more efficient than
smaller ones. That is, the cost (time) per byte is smaller for
larger transfers. (Why?)

m sequential 1/0 is faster than non-sequential 1/0O

m sequential |/O operations eliminate the need for (most) seeks

m while sequential 1/0 is not always possible, we can group
requests to try and reduce average request time

Historically, seek time is the dominating cost. High-end drives can
have maximum seek times around 4 milliseconds. Consumer grade
drives more commonly have seek times between 9 and 12 millisec-
onds.

18 /27

Disk Head Scheduling

m goal: reduce seek times by controlling the order in which
requests are serviced

m disk head scheduling may be performed by the device, by the
operating system, or both

m for disk head scheduling to be effective, there must be a

queue of outstanding disk requests (otherwise there is nothing
to reorder)

m first-come, first served is fair and simple, but offers no
optimization for seek times

50 100
NN NN N NN
N N

T T T T T
| | | | |
| OV’. | .. | |
| | | | -
/ / [/
/ / / / / /
/ / / / / / /
/ / head / / / / / / /
’ i / /
/ / / / / / /
/ / / / / /
/
53 6570 104 183 19 / 27
arrival order: 104 183 14 65 70

Shortest Seek Time First (SSTF)

m choose closest request (a greedy approach)

m seek times are reduced, but requests may starve

arrival order: 104 183 14 65 70

20/ 27

Elevator Algorithms (SCAN)

m Under SCAN, aka the elevator algorithm, the disk head moves
in one direction until there are no more requests in front of it,
then reverses direction.

m there are many variations on this idea

m SCAN reduces seek times (relative to FCFS), while avoiding
starvation

’

53 6570

arrival order: 104 183 14 65 70
21 /27
Device Register Example: Sys/161 disk controller

Offset | Size Type Description

0 4 status number of sectors

4 4 status and command | status

8 4 command sector number

12 4 status rotational speed (RPM)
32768 | 512 data transfer buffer

22 /27

Writing to a Sys/161 Disk

Device Driver Write Handler:

// only one disk request at a time

P(disk semaphore)

copy data from memory to device transfer buffer

write target sector number to disk sector number register
write ‘‘write’’ command to disk status register

// wait for request to complete

P(disk completion semaphore)

V(disk semaphore)

Interrupt Handler for Disk Device

// make the device ready again
write disk status register to ack completion
V(disk completion semaphore)

The thread that initiates the write should wait until that write is
completed before continuing.

23 /27

Reading From a Sys/161 Disk

Device Driver Read Handler:

// only one disk request at a time

P(disk semaphore)

write target sector number to disk sector number register
write ‘‘read’’ command to disk status register

// wait for request to complete

P(disk completion semaphore)

copy data from device transfer buffer to memory

V(disk semaphore)

Interrupt Handler for Disk Device

// make the device ready again
write disk status register to ack completion
V(disk completion semaphore)

The thread that initiates the read must wait until that read is
completed before continuing.

24 /27

Solid State Drives(SSD)

m no mechanical parts; use integrated circuits for persistant
storage instead of magnetic surfaces

m variety of implementations
m DRAM: requires constant power to keep values
m Flash Memory: traps electrons in quantum cage
m logically divided into blocks and pages

m 2, 4 or 8KB pages
m 32KB-4MB blocks

m reads/writes at page level
m pages are initialized to 1s; can transition 1 — 0 at page level
(i.e., write new page)
m a high voltage is required to switch 0 — 1 (i.e.,

overwrite/delete page)
m cannot apply high voltage at page level, only to blocks

m overwriting/deleting data must be done at the block level

25 /27

Writing and Deleting from Flash Memory

m Naive Solution (slow):
m read whole block into memory
m re-initialize block (all page bits back to 1s)
m update block in memory; write back to SSD
m SSD controller handles requests (faster):
m mark page to be deleted/overwritten as invalid
m write to an unused page
m update translation table
m requires garbage collection

Each block of an SSD has a limited number of write cycles before
it becomes read-only. SSD controllers perform wear leveling, dis-
tributing writes evenly across blocks, so that the blocks wear down
at an even rate.

Hence, defragmentation, which takes files spread across multiple,
non-sequential pages and makes them sequential, can be harmful to
the lifespan of an SSD. Additionally, since there are no moving parts,
defragmentation serves no performance advantage.

26 / 27

Persistent RAM

m values are persistant in the absence of power

m ReRAM: resistive RAM
m 3D XPoint, Intel Optane

m can be used to improve the performance of secondary storage

m traditional CPU caches are small; not effective for caching
many disk blocks

m RAM can cache i-nodes and data blocks; but should be used
for address spaces

m use persistant RAM instead

m i-nodes and data blocks silently cached to this special memory

m Intel Optane, for example, modules are 16-32GB, so many
blocks can be cached giving big performance improvements
when mechanical disks are used

27 /27

