Processes and the Kernel

process,system call,processor
exception,fork /execv,multiprocessing

Rob Hackman, Kevin Lanctot

David R. Cheriton School of Computer Science
University of Waterloo

Fall 2022

1/53

What is a Process? -

A process is an environment in which an application program
runs.

process

m a process includes virtualized
resources that its program can use:
m one (or more) threads
m virtual memory, used for the program'’s code and
data

m other resources, e.g., file and socket descriptors
thread array

m processes are created and managed by
the kernel

m each program'’s process isolates it
from other programs in other processes

file descriptor table, etc.

2/53

Process Management Calls

Processes can be created, managed, and destroyed. Each OS
supports a variety of functions to perform these tasks.

y I Linux | 0S/161 |
Creation fork,execv fork,execv
Destruction _exit, kill _exit
Synchronization wait,waitpid,pause,. .. waitpid
Attribute Mgmt || getpid,getuid,nice,getrusage,. .. getpid

The OS/161 process management calls are NOT implemented yet.]

3/53

fork, _exit, and waitpid

m fork creates a new process (the child) that is a clone of the
original (the parent)
m after fork, both parent and child are executing copies of the
same program
m virtual memories of parent and child are identical at the time
of the fork, but may diverge afterwards

m fork is called by the parent, but returns in both the parent
and the child

m parent and child see different return values from fork
m _exit terminates the process that calls it

m process can supply an exit status code when it exits
m kernel records the exit status code in case another process asks
for it (via waitpid)

m waitpid lets a process wait for another to terminate, and
retrieve its exit status code

4/53

The fork, _exit, getpid and waitpid system calls

main() {
rc = fork(); /* returns O to child, pid to parent */
if (rc == 0) { /* child executes this code */

my_pid = getpid();
x = child_code();
_exit(x);
} else { /* parent executes this code */
child_pid = rc;
parent_pid = getpid();
parent_code();
int child_exit;
p = waitpid(child_pid,&child_exit,0);
if (WIFEXITED(child_exit))
printf("child exit status was %d\n",
WEXITSTATUS (child_exit))

¥ 5 /53

The execv system call

m execv changes the program that a process is running
m The calling process’s current virtual memory is destroyed

m The process gets a new virtual memory, initialized with the
code and data of the new program to run

m After execv, the new program starts executing

The process ID stays the same.

execv can pass arguments to the new program, if required

6/53

execv example

int main()

{
int rc = 0;
char xargs[4];

args[0] = (char *) "/testbin/argtest";
args[1] = (char *) "first";

args[2] = (char *) "second";

args[3] = 0;

rc = execv("/testbin/argtest", args);
printf ("If you see this execv failed\n");
printf("rc = Jd errno = %d\n", rc, errno);
exit (0);

7/53

Combining fork and execv

main()
{
char *args[4];
/* set args here */
rc = fork(); /* returns O to child, pid to parent */
if (rc == 0) {
status = execv("/testbin/argtest",args);
printf ("If you see this execv failed\n");
printf ("status = %d errno = %d\n", status, errno);
exit (0);
} else {
child_pid = rc;
parent_code();
p = waitpid(child_pid,&child_exit,0);

8/53

System Calls

Process management calls, e.g., fork, are called by user programs.
They are also system calls. System calls are the interface
between processes and the kernel.

Service 0S/161 Examples
create,destroy,manage processes fork,execv,waitpid,getpid
create,destroy,read,write files open,close,remove,read,write
manage file system and directories | mkdir,rmdir,link,sync
interprocess communication pipe,read,write
manage virtual memory sbrk
query,manage system reboot,__time

9/53

System Call Software Stack

application A
system call library unprivileged
code
privileged
kernel code

10 /53

Kernel Privilege

m The CPU implements different levels (or rings) of execution
privilege as a security and isolation mechanism.

m Kernel code runs at the highest privilege level.

m Application code runs at a lower privilege level because user
programs should not be permitted to perform certain tasks such
as:

m modifying the page tables that the kernel uses to implement
process virtual memories (address spaces)
m halting the CPU

m Programs cannot execute code or instructions belonging to a
higher-level of privilege. These restrictions allow the kernel to keep
processes isolated from one another - and from the kernel.

m Application programs cannot directly call kernel functions or
access kernel data structures.

The Meltdown vulnerability found on Intel chips lets user applications
bypass execution privilege and access any address in physical memory.

11/53

How System Calls Work (Part 1)

Since application programs can't directly call the
kernel, how does a program make a system call
such as fork?

m There are only two things that make kernel code run:
Interrupts
B interrupts are generated by devices when they need attention
Exceptions

B exceptions are caused by instruction execution when a running
program needs attention

12 /53

Recall: Interrupts

m Interrupts are raised by devices (hardware)

m An interrupt causes the hardware to transfer control to a fixed
location in memory, where an interrupt handler is located

m Interrupt handlers are part of the kernel
m If an interrupt occurs while an application program is running,
control will jump from the application to the kernel’s interrupt
handler
m When an interrupt occurs, the processor switches to privileged
execution mode when it transfers control to the interrupt
handler
m This is how the kernel gets its execution privilege

13 /53

Exceptions

m Exceptions are conditions that occur during the execution of a
program instruction.
m Examples: arithmetic overflows, illegal instructions, or page
faults (to be discussed later).
m Exceptions are detected by the CPU during instruction
execution
m The CPU handles exceptions like it handles interrupts:

m control is transferred to a fixed location, where an exception
handler is located
m the processor is switched to privileged execution mode

m The exception handler is part of the kernel

14 /53

MIPS Exception Types

EX_IRQ
EX_MOD
EX_TLBL
EX_TLBS
EX_ADEL
EX_ADES
EX_IBE
EX_DBE
EX_SYS
EX_BP
EX_RI
EX_CPU
EX_OVF

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Interrupt */

TLB Modify (write to read-only page) */
TLB miss on load */

TLB miss on store */

Address error on load */

Address error on store */

Bus error on instruction fetch */
Bus error on data load *or* store */
Syscall */

Breakpoint */

Reserved (illegal) instruction */
Coprocessor unusable */

Arithmetic overflow */

On the MIPS, the same mechanism handles exceptions and inter-
rupts, and there is a single handler for both in the kernel. The
handler uses these codes to determine what triggered it to run.

15 /53

How System Calls Work (Part 2)

m To perform a system call, the application program needs to
cause an exception to make the kernel execute:

m on the MIPS, EX_SYS is the system call exception

m To cause this exception on the MIPS, the application executes
a special purpose instruction: syscall

m other processor instruction sets include similar instructions,
e.g., syscall on x86
m The kernel's exception handler checks the exception code (set
by the CPU when the exception is generated) to distinguish
system call exceptions from other types of exceptions.

16 /53

Which System Call?

m There is only one syscall exception. fork and getpid are
both system calls. How does the kernel know which system
call the application is requesting?

m Answer: system call codes

m the kernel defines a code for each system call it understands

m the kernel expects the application to place a code in a
specified location before executing the syscall instruction

m for OS/161 on the MIPS, the code goes in register v0
m the kernel's exception handler checks this code to determine
which system call has been requested
m the codes and code location are part of the kernel ABI
(Application Binary Interface)

Example: loading a system call code

Example: 1i vO, 0 loads the system call code for fork into vO.

17 /53

Some OS/161 System Call Codes

#define
#define
#define
#define
#define
#define

SYS_fork
SYS_vfork
SYS_execv
SYS__exit
SYS_waitpid
SYS_getpid

g W N~ O

This comes from kern/include/kern/syscall.h.
kern/include/kern define things (like system call codes) that must
be known by both the kernel and applications.

The files in

18 /53

System Call Parameters

m System calls take parameters and return values, like function
calls. How does this work, since system calls are really just
exceptions?

m Answer: The application places parameter values in
kernel-specified locations before the syscall, and looks for
return values in kernel-specified locations after the exception
handler returns

m The locations are part of the kernel ABI
m Parameter and return value placement is handled by the
application system call library functions
m On MIPS, parameters go in registers a0,al,a2,a3
m result success/fail code is in a3 on return
m return value or error code is in vO on return

19 /53

System Call Software Stack (again)

application
1 A 5
system call library unprivileged
5 4 code
privileged
| 3 kernel code

[System calls are expensive

Which is faster?

N separate print calls, or form-
ing a string of N numbers and a
single print.

application calls library

wrapper function for desired
system call

library function performs
syscall instruction

kernel exception handler
runs

(a) creates trap frame to save application program
state

(b) determines that this is a system call exception
(c) determines which system call is being requested
(d) does the work for the requested system call

(e) restores the application program state from the
trap frame
() returns from the exception

library wrapper function
finishes and returns from its
call

application continues
execution

20/53

User and Kernel Stacks

m Every OS/161 process thread has two stacks, although it only
uses one at a time
m User (Application) Stack: used while application code is
executing
m this stack is located in the application’s virtual memory
m it holds activation records for application functions
m the kernel creates this stack when it sets up the virtual
address memory for the process
m Kernel Stack: used while the thread is executing kernel code,
after an exception or interrupt
m this stack is a kernel structure
m in OS/161, the t_stack field of the thread structure points
to this stack
m this stack holds activation records for kernel functions
m this stack also holds trap frames and switch frames
(because the kernel creates trap frames and switch frames)

21/53

Exception Handling in OS/161

m first to run is careful assembly code that

saves the application stack pointer

switches the stack pointer to point to the thread’s kernel stack
carefully saves application state and the address of the
instruction that was interrupted in a trap frame on the
thread's kernel stack

calls mips_trap, passing a pointer to the trap frame as a
parameter

m after mips_trap is finished, the handler will

restore application state (including the application stack
pointer) from the trap frame on the thread’s kernel stack

m jump back to the application instruction that was interrupted,

and switch back to unprivileged execution mode

m see kern/arch/mips/locore/exception-mipsl.S

22 /53

mips_trap

m mips_trap determines what type of exception this is by
looking at the exception code: interrupt? system call?
something else?

m there is a separate handler in the kernel for each type of
exception:

m interrupt? call mainbus_interrupt

m address translation exception? call vm_fault (important for
later assignments!)

m system call? call syscall (kernel function), passing it the trap
frame pointer

m syscall is in kern/arch/mips/syscall/syscall.c

m see kern/arch/mips/locore/trap.c

23 /53

Multiprocessing

m Multiprocessing (or multitasking) means having multiple
processes existing at the same time
m All processes share the available hardware resources, with the
sharing coordinated by the operating system:
m Each process’ virtual memory is implemented using some of
the available physical memory. The OS decides how much

memory each process gets.
m Each process’ threads are scheduled onto the available CPUs

(or CPU cores) by the OS.

m Processes share access to other resources (e.g., disks, network
devices, |/O devices) by making system calls. The OS controls
this sharing.

m The OS ensures that processes are isolated from one another.
Interprocess communication should be possible, but only at

the explicit request of the processes involved.

Processes can have many threads, but must have at least one to
execute. OS/161 only supports a single thread per process.

24 /53

Two-Process Example

process A

process A _|
thread

>

timer interrupt

quantum has
expired

context switch

process B

kernel / thread

¢4

quantum has

not expired

context switch

process B

T

Threads "waiting in” the kernel are ready.

25 /53

Example: System Calls (1/27)

SA

]

£

el

g kernel
kg

=

s

()

o

Q

£

©

(9]

(o))

9

2

8

37 proc1]| proc2|| proc3

26 /53

Example: System Calls (2/27)

w
TA
o
£
-
b
2 kernel
=
S
w
kS licati fork()
application

IS ﬁ stack frames

(]
g o >
< o S
= >
a
c
"y | procl proc 2

Proc A calls fork, a system call.

27 /53

Example: System Calls (3/27)

()
<A
(]
S
©
g kernel
9
=
—
[oR
)
-8 licati li0, vO
application i0, vi
E ﬁ stack frames syscall
3| |2 :
o n fork _8
(] ()] o
— "
> S
=
o
c
=
v proc 1 proc 2

fork is a system call library function. It puts the system call code
in register vO and raises the exception.

28 /53

Example: System Calls (4/27)

common_exception
0x8000 0080

application
stack frames

fork

code

-
(9]
T
+—
wv
—
<%}
wv
=}

kernel stack

privileged mode

proc 2

Exception is raised, the CPU executes common_exception. The CPU
goes into privileged mode and interrupts are turned off. Switch from
user to kernel stack. Save trapframe.

29 /53

Example: System Calls (5/27)

mips_trap

stack frames

fork

code

-
(9]
T
+—
wv
—
<%}
wv
=}

kernel stack

privileged mode

proc 2

After saving the state common_exception calls mips_trap to deter-
mine what kind of exception was raised. For a system call, turn
interrupts back on.

30/53

Example: System Calls (6/27)

syscall
trapframe

application
stack frames

fork mips_trap

code

4
(9
(30
—
(%]
—
<%}
(%2}
=}

kernel stack

privileged mode

proc 2

mips_trap determines exception is a system call. Calls syscall, a
kernel function to dispatch the correct function.

31/53

Example: System Calls (7/27)

sys_fork
trapframe

application
stack frames

fork mips_trap

user stack
code

syscall

kernel stack

privileged mode

proc 2

syscall, the system call dispatcher, calls the appropriate handler for
the system call code provided in vO. In this case, sys_fork is called.

32/53

Example: System Calls (8/27)

application trapframe
stack frames

fork

code

mips_trap

user stack

syscall

kernel stack

sys_fork

privileged mode

proc 2

The system call is finally executed by the kernel.

33/53

Example: System Calls (9/27)

application
stack frames

fork

user stack
code

o e

8

1

g timer
= interrupt
2

s

proc 2

A timer interrupt occurs.

34 /53

Example: System Calls (10/27)

commo n_exceptio n

0x8000 0080
trapframe

application
stack frames

fork

code

mips_trap

user stack

syscall

kernel stack

sys_fork

trapframe

privileged mode

proc 2

CPU executes common_exception. Interrupts are turned off. Save
trapframe.

35/53

Example: System Calls (11/27)

mips_trap
trapframe

application
stack frames

fork mips_trap

user stack
code

syscall

kernel stack

sys_fork

trapframe

privileged mode

proc 2

mips_trap determines which exception has been raised. In this case,
a timer interrupt.

36 /53

Example: System Calls (12/27)

application trapframe
stack frames

fork mips_trap

user stack

syscall

kernel stack

sys_fork

trapframe

privileged mode

mips_trap

mainbus_interrupt

proc 2

code

then calls the appropriate handler.

mainbus_interrupt determines which device threw the interrupt,

37/53

Example: System Calls (13/27)

application trapframe
stack frames

fork mips_trap

user stack

syscall

kernel stack

sys_fork

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt handler

proc 2

code

The device interrupt handler runs. Thread quantum has expired.

38/53

Example: System Calls (14/27)

stack frames

fork

user stack
kernel stack

privileged mode

mainbus
interrupt
interrupt
handler

thread_yield

proc 2

code

Quantum expired. thread_yield is called to perform context switch.

39/53

Example: System Calls (15/27)

thread_switch
application

trapframe
stack frames

mips_trap

code

fork

user stack

kernel stack

syscall

sys_fork

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

proc 2

thread_yield

thread_yield calls thread_switch.

40 /53

Example: System Calls (16/27)

switchframe
application

trapframe
stack frames

code

fork mips_trap

=
v
]
—
7]
P
(<]
(%]
=]

syscall

~
U
S
2
wv
@
c
-
]
~

sys_fork

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

proc 2

thread_yield

thread_switch

thread_switch calls switchframe_switch.

41/53

Example: System Calls (17/27)

~ application oz o application e trapframe
v} stack frames [v] [v] stack frames [} y
]] I s mips_trap
& el mips trap & &
fork — — .
() T [] T [] mainbus
< | = &S c i
le) 5 a syscall 35 6 interrupt
£ X < interrupt
T sys_fork handler
o -
g trapframe thread_yield
=
=
o

switchframe

thread_switch
m
m

handler context
switch
Crveor |

e

rap
ainbus
interrupt

State of current thread saved, context switch occurs.

42 /53

Example: System Calls (18/27)

mainbus
interrupt
interrupt
handler
thread_yield
thread_switch

i

~ application o " application o trapframe

v} stack frames [] [v] stack frames =] y

< T Il S mips_trap
4 o T 5 | mainbus
3 2 g 2l
le) 35 m syscall 35 E interrupt
£ =3 < interrupt
? sysfork handler
g -
_% trapframe thread_yield
2
=
o

State of new thread restored, return to thread_yield.

43 /53

Example: System Calls (19/27)

trapframe

terrupt
handler
thread_yield
thread_switch

i

)| epplication ™ | appication e trapframe
v} stack frames [] [v] stack frames =] y
< T Il S mips_trap
z 4 M| :
o o] = | mainbus
T P c & 2l
o g m syscall g S interrupt
£ 4 4 interrupt
8 sys_fork handler
jo)]
2
z
=
o

thread_yield returns to interrupt handler.

44 /53

Example: System Calls (20/27)

application application
stack frames stack frames

fork

user stack

user stack

mips_trap
syscall

sys_fork

kernel stack
kernel stack

trapframe

privileged mode

mainbus
interrupt
interrupt
handler
thread_yield
thread_switch

trapframe

mips_trap

mainbus
interrupt

i

The interrupt handler returns to mainbus_interrupt.

45 /53

Example: System Calls (21/27)

sys_fork

application
stack frames

application
stack frames

fork

user stack

kernel stack
user stack

trapframe

privileged mode

terrupt
handler
thread_yield

thread_switch

e

kernel stack

trapframe

mips_trap

mainbus_interrupt returns to mips_trap.

46 /53

Example: System Calls (22/27)

application application
stack frames stack frames

sys_fork

fork

user stack
kernel stack
user stack

trapframe

privileged mode

terrupt
handler
thread_yield

thread_switch

e

kernel stack

trapframe

mips_trap returns to common_exception.

47 /53

Example: System Calls (23/27)

application application
stack frames stack frames

syscall

sys_fork

fork

user stack
kernel stack
user stack
kernel stack

trapframe

privileged mode

ainbus
interrupt
interrupt
handler
thread_yield

thread_switch

e

Thread context is restored from trapframe. Switch from kernel to

user stacks. Switch to unprivileged mode. User code continues
execution.

48 /53

Example: System Calls (24/27)

application trapframe
stack frames

fork

code

mips_trap

user stack

syscall

kernel stack

sys_fork

privileged mode

proc 2

Suppose the timer interrupt did NOT occur.

49 /53

Example: System Calls (25/27)

if (err) { /* error */
tf->tf_v0=err;
tf->tf_ a3 =1;

}else { /* no error */
tf->tf_vO0 = retval;
tf->tf_a3 =0;

application

trapframe
stack frames

code

fork mips_trap

user stack

syscall }

kernel stack

/* advance PC */
tf->tf_epc +=4;

privileged mode

proc 2

sys_fork returns to syscall. syscall sets up the return value/error
code and result. It also increments the PC.

50 /53

Example: System Calls (26/27)

% % g
¢ ° E
Q [}

K] & £

£ g

o

9]

o

<

=

A

Q

proc 2
[syscall returns to mips_trap.]

51/53

Example: System Calls (27/27)

common_exception
application 0x8000 0080
stack frames

fork

code

jrko
rfe

=
o
]
—
%]
S
(<]
(%]
=)

=
o
L]
i)
- -
]
(=
=
- ¢
A4

privileged mode

proc 2

mips_trap returns to common_exception. The trapframe data is
restored. Switch from kernel to user stack. Switch to unprivileged
mode (rfe). User code continues execution.

52 /53

Inter-Process Communication (IPC)

Processes are isolated from each other. But, what if they want to
communicate (share data) with each other?
IPC or inter-process communication is a family of methods used to

send data between processes.

m File: data to be shared is written to a file, accessed by both
processes

m Socket: data is sent via network interface between processes

m Pipe: data is sent, unidirectionally, from one process to
another via OS-managed data buffer

m Shared Memory: data is sent via block of shared memory
visible to both processes

m Message Passing/Queue: a queue/data stream provided by
the OS to send data between processes

53 /53

