Processes and the Kernel

process,system call,processor
exception,fork /execv,multiprocessing

Rob Hackman, Kevin Lanctot

David R. Cheriton School of Computer Science
University of Waterloo

Fall 2022

1/53

What is a Process? .

A process is an environment in which an application program
runs.

process

m a process includes virtualized
resources that its program can use:
m one (or more) threads
m virtual memory, used for the program’s code and
data
m other resources, e.g., file and socket descriptors

thread array

m processes are created and managed by
the kernel

m each program’s process isolates it
from other programs in other processes

file descriptor table, etc.

2 /53

Process Management Calls

Processes can be created, managed, and destroyed. Each OS
supports a variety of functions to perform these tasks.

Linux 0S/161
Creation fork,execv fork,execv
Destruction _exit, kill _exit
Synchronization wait,waitpid,pause,. . . waitpid
Attribute Mgmt || getpid,getuid,nice,getrusage,. .. getpid

The OS/161 process management calls are NOT implemented yet.

3/53

fork, _exit, and waitpid

m fork creates a new process (the child) that is a clone of the
original (the parent)
m after fork, both parent and child are executing copies of the
same program
m virtual memories of parent and child are identical at the time
of the fork, but may diverge afterwards

m fork is called by the parent, but returns in both the parent
and the child

m parent and child see different return values from fork
m _exit terminates the process that calls it

m process can supply an exit status code when it exits
m kernel records the exit status code in case another process asks
for it (via waitpid)

m waitpid lets a process wait for another to terminate, and
retrieve its exit status code

4/53

The fork, _exit, getpid and waitpid system calls

main() {
rc = fork(); /* returns O to child, pid to parent */

if (rc == 0) { /* child executes this code */
my_pid = getpid();
x = child_code();
_exit(x);
} else { /* parent executes this code */
child_pid = rc;
parent_pid = getpid();
parent_code() ;
int child_exit;
p = waitpid(child_pid,&child_exit,0);
if (WIFEXITED(child_exit))
printf("child exit status was %d\n",
WEXITSTATUS(child_exit))

¥ 5 /53

The execv system call

m execv changes the program that a process is running
m The calling process’s current virtual memory is destroyed

m [he process gets a new virtual memory, initialized with the
code and data of the new program to run

m After execv, the new program starts executing

The process ID stays the same.

execv can pass arguments to the new program, if required

6/53

execv example

int main()

{
int rc = 0;
char *args[4];

args[0] = (char *) "/testbin/argtest";
args[1] = (char *) "first";

args[2] = (char *) "second";

args[3] = 0;

rc = execv("/testbin/argtest", args);
printf ("If you see this execv failed\n");
printf("rc = %d errno = %d\n", rc, errno);
exit (0);

7/53

Combining fork and execv

main()
{
char *args[4];
/* set args here */
rc = fork(); /* returns O to child, pid to parent */
if (rc == 0) {
status = execv("/testbin/argtest",args);
printf ("If you see this execv failed\n");
printf("status = %d errno = %d\n", status, errno);
exit (0);
} else {
child_pid = rc;
parent_code() ;
p = waitpid(child_pid,&child_exit,0);

8 /53

System Calls

Process management calls, e.g., fork, are called by user programs.
They are also system calls. System calls are the interface
between processes and the kernel.

Service 0S/161 Examples
create,destroy,manage processes fork,execv,waitpid,getpid
create,destroy,read,write files open,close,remove,read,write
manage file system and directories | mkdir,rmdir,link,sync
interprocess communication pipe,read,write
manage virtual memory sbrk
query,manage system reboot,__time
9/53

System Call Software Stack

application
system call library unprivileged
code
privileged
kernel code

10 /53

Kernel Privilege

m The CPU implements different levels (or rings) of execution
privilege as a security and isolation mechanism.

m Kernel code runs at the highest privilege level.

m Application code runs at a lower privilege level because user
programs should not be permitted to perform certain tasks such
as:

m modifying the page tables that the kernel uses to implement

process virtual memories (address spaces)
m halting the CPU

m Programs cannot execute code or instructions belonging to a
higher-level of privilege. These restrictions allow the kernel to keep
processes isolated from one another - and from the kernel.

m Application programs cannot directly call kernel functions or
access kernel data structures.

The Meltdown vulnerability found on Intel chips lets user applications
bypass execution privilege and access any address in physical memory.

11/53

How System Calls Work (Part 1)

Since application programs can't directly call the
kernel, how does a program make a system call
such as fork?

m There are only two things that make kernel code run:
Interrupts
B interrupts are generated by devices when they need attention
Exceptions

B exceptions are caused by instruction execution when a running
program needs attention

12 /53

Recall: Interrupts

m Interrupts are raised by devices (hardware)

m An interrupt causes the hardware to transfer control to a fixed
location in memory, where an interrupt handler is located
m Interrupt handlers are part of the kernel

m If an interrupt occurs while an application program is running,
control will jump from the application to the kernel’s interrupt
handler

m When an interrupt occurs, the processor switches to privileged
execution mode when it transfers control to the interrupt
handler

m This is how the kernel gets its execution privilege

13 /53

Exceptions

m Exceptions are conditions that occur during the execution of a
program instruction.

m Examples: arithmetic overflows, illegal instructions, or page
faults (to be discussed later).
m Exceptions are detected by the CPU during instruction
execution
m The CPU handles exceptions like it handles interrupts:

m control is transferred to a fixed location, where an exception
handler is located
m the processor is switched to privileged execution mode

m T he exception handler is part of the kernel

14 /53

MIPS Exception Types

EX_IRQ 0 /* Interrupt */

EX_MOD 1 /* TLB Modify (write to read-only page) */
EX_TLBL 2 /* TLB miss on load */

EX_TLBS 3 /* TLB miss on store */

EX_ADEL 4 /* Address error on load */

EX_ADES 5 /* Address error on store */

EX_IBE 6 /* Bus error on instruction fetch */
EX_DBE 7 /* Bus error on data load *or* store */
EX_SYS 8 /* Syscall */

EX_BP 9 /* Breakpoint */

EX_RI 10 /* Reserved (illegal) instruction */
EX_CPU 11 /* Coprocessor unusable */
EX_QOVF 12 /* Arithmetic overflow */

On the MIPS, the same mechanism handles exceptions and inter-
rupts, and there is a single handler for both in the kernel. The
handler uses these codes to determine what triggered it to run.

15 /53

How System Calls Work (Part 2)

m To perform a system call, the application program needs to
cause an exception to make the kernel execute:

m on the MIPS, EX_SYS is the system call exception

m To cause this exception on the MIPS, the application executes
a special purpose instruction: syscall

m other processor instruction sets include similar instructions,
e.g., syscall on x86

m The kernel's exception handler checks the exception code (set
by the CPU when the exception is generated) to distinguish
system call exceptions from other types of exceptions.

16 /53

Which System Call?

m [here is only one syscall exception. fork and getpid are
both system calls. How does the kernel know which system
call the application is requesting?

m Answer: system call codes

m the kernel defines a code for each system call it understands
m the kernel expects the application to place a code in a
specified location before executing the syscall instruction

m for OS/161 on the MIPS, the code goes in register vO

m the kernel's exception handler checks this code to determine
which system call has been requested

m the codes and code location are part of the kernel ABI
(Application Binary Interface)

Example: loading a system call code

Example: 1i vO, O loads the system call code for fork into vO.

17 /53

Some OS/161 System Call Codes

#define SYS_fork
#define SYS_vfork
#define SYS_execv
#define SYS__exit
#define SYS_waitpid
#define SYS_getpid

a s W NN =- O

This comes from kern/include/kern/syscall.h. The files in
kern/include/kern define things (like system call codes) that must
be known by both the kernel and applications.

18 /53

System Call Parameters

m System calls take parameters and return values, like function

calls. How does this work, since system calls are really just
exceptions?

m Answer: The application places parameter values in
kernel-specified locations before the syscall, and looks for
return values in kernel-specified locations after the exception
handler returns

m The locations are part of the kernel ABI

m Parameter and return value placement is handled by the
application system call library functions

m On MIPS, parameters go in registers a0,al,a2,a3

B result success/fail code is in a3 on return
B return value or error code is in vO on return

19 /53

System Call Software Stack (again)

application calls library
wrapper function for desired

system call
: application 4 |, library function performs
system call library unprivileged SYSCall Instruction
S I (4. code kernel exception handler
rivileged runs
3 kernel P codg (a) creates trap frame to save application program
(b) iiiat‘;imines that this is a system call exception
- (c) determines which system call is being requested
System calls are expensive (d) does the work for the requested system call
(e) resto:;es the application program state from the
. . t
Which is faster? (f) r:ziﬁrnrsa;?gm the exception
N separate print calls, or form- . .
ing a string of N numbers and a ll.brary wrapper function .
single print. finishes and returns from its
‘ call
application continues
execution

20 /53

User and Kernel Stacks

m Every OS/161 process thread has two stacks, although it only
uses one at a time

m User (Application) Stack: used while application code is
executing

m this stack is located in the application’s virtual memory

m it holds activation records for application functions

m the kernel creates this stack when it sets up the virtual
address memory for the process

m Kernel Stack: used while the thread is executing kernel code,
after an exception or interrupt
m this stack is a kernel structure

m in OS/161, the t_stack field of the thread structure points
to this stack

m this stack holds activation records for kernel functions

m this stack also holds trap frames and switch frames
(because the kernel creates trap frames and switch frames)

21/53

Exception Handling in OS/161

m first to run is careful assembly code that

m saves the application stack pointer

m switches the stack pointer to point to the thread'’s kernel stack

m carefully saves application state and the address of the
instruction that was interrupted in a trap frame on the
thread’s kernel stack

m calls mips_trap, passing a pointer to the trap frame as a
parameter

m after mips_trap is finished, the handler will

m restore application state (including the application stack
pointer) from the trap frame on the thread's kernel stack

m jump back to the application instruction that was interrupted,
and switch back to unprivileged execution mode

m see kern/arch/mips/locore/exception-mipsl.S

22 /53

mips_trap

m mips_trap determines what type of exception this is by
looking at the exception code: interrupt? system call?
something else?

m there is a separate handler in the kernel for each type of
exception:

m interrupt? call mainbus_interrupt

m address translation exception? call vm_fault (important for
later assignments!)

m system call? call syscall (kernel function), passing it the trap
frame pointer

m syscall is in kern/arch/mips/syscall/syscall.c

m see kern/arch/mips/locore/trap.c

23 /53

Multiprocessing

m Multiprocessing (or multitasking) means having multiple
processes existing at the same time

m All processes share the available hardware resources, with the
sharing coordinated by the operating system:

m Each process’ virtual memory is implemented using some of
the available physical memory. The OS decides how much
memory each process gets.

m Each process’ threads are scheduled onto the available CPUs
(or CPU cores) by the OS.

m Processes share access to other resources (e.g., disks, network
devices, |/O devices) by making system calls. The OS controls
this sharing.

m The OS ensures that processes are isolated from one another.
Interprocess communication should be possible, but only at

the explicit request of the processes involved.

Processes can have many threads, but must have at least one to
execute. OS/161 only supports a single thread per process.

24 /53

Two-Process Example

process B
process A kernel thread process B
process A __’E timer interrupt "4
thread LISERES RRNRNRNRRERRRRRERENNNER] R RLRY" : é__quantum has

PP PRI ... not expired
""""" quantum has | | & eejoontextswitch L.
expired : :
context switch ' """"""""""""""""""""""""""" ’

Threads "waiting in” the kernel are ready.

25 /53

Example: System Calls (1/27)

privileged mode

>

unprivileged mode

proc

11| proc 2

proc

3

26 /53

Example: System Calls (2/27)

Q
<A
(@]
=
©
:J.’, kernel
s
S
Q
-8 lication fork()
applica
£ % stack frames
5]
g tr S
ks g S
= =
S
[
"y | proc proc 2

Proc A calls fork, a system call.

27 /53

Example: System Calls (3/27)

D
<A
o
S
L®]
Q kernel
Q
=
| .
o
D
-8 licati lio, vO
application 10, v
= % stack frames syscall
3 : :
o a fork -8
ks g o
= 3
| .
Q
cC
-}
v proc 1 proc 2

fork is a system call library function. It puts the system call code
in register vO and raises the exception.

28 /53

Example: System Calls (4/27)

application
stack frames

fork

user stack

=~
&)
(1)
i
[%5]
@
c
_
Q
Y

privileged mode

common_exception
0x8000 0080

code

proc 2

user to kernel stack. Save trapframe.

Exception is raised, the CPU executes common_exception. The CPU
goes into privileged mode and interrupts are turned off. Switch from

29 /53

Example: System Calls (5/27)

application trapframe
stack frames

fork

user stack
kernel stack

privileged mode

mips_trap

proc 2

code

interrupts back on.

After saving the state common_exception calls mips_trap to deter-
mine what kind of exception was raised. For a system call, turn

30/53

Example: System Calls (6/27)

syscall

application trapframe
stack frames

code

fork mips_trap

user stack

=~
&)
(1)
i
[%5]
@
c
_
Q
Y

privileged mode

proc 2

mips_trap determines exception is a system call. Calls syscall, a
kernel function to dispatch the correct function.

31/53

Example: System Calls (7/27)

sys_fork

application trapframe
stack frames

mips_trap

code

fork

user stack

syscall

kernel stack

privileged mode

proc 2

syscall, the system call dispatcher, calls the appropriate handler for
the system call code provided in vO. In this case, sys_fork is called.

32/53

Example: System Calls (8/27)

application trapframe
ﬁ stack frames % P Q
: T 2
2 fork ek mips_trap o
2 B g
o 9 c syscall
£ <
O sys_fork
v
(®))
Q
=
o
proc 2
The system call is finally executed by the kernel.
33/53
Example: System Calls (9/27)
application
ﬁ stack frames Q
3 E
0 fork O
<y O
O n
o >
€
k5 timer
> .
= Interrupt
2
ol
proc 2

A timer interrupt occurs.

34 /53

Example: System Calls (10/27)

common_exception

application trapframe 0x8000 0080

stack frames

code

mips_trap

fork

syscall

user stack

kernel stack

sys_fork

trapframe

privileged mode

proc 2

CPU executes common_exception. Interrupts are turned off. Save
trapframe.

35 /53

Example: System Calls (11/27)

mips_trap

application trapframe
stack frames

code

fork mips_trap

user stack

syscall

kernel stack

sys_fork

trapframe

privileged mode

proc 2

mips_trap determines which exception has been raised. In this case,
a timer interrupt.

36 /53

Example: System Calls (12/27)

application trapframe
stack frames

mips_trap

fork

user stack

syscall

kernel stack

sys_fork

mainbus_interrupt

trapframe

privileged mode

mips_trap

proc 2

code

then calls the appropriate handler.

mainbus_interrupt determines which device threw the interrupt,

37 /53

Example: System Calls (13/27)

application
stack frames

trapframe

fork mips_trap

user stack

syscall

kernel stack

sys_fork

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt handler

proc 2

code

The device interrupt handler runs. Thread quantum has expired.

38 /53

Example: System Calls (14/27)

privileged mode

application
stack frames

fork

-
o
[1°]
+—
vy
| -
)
v
3

trapframe
mips_trap

syscall

2
o]
(L]
b
v
K]
c
—
O
Y

sys_fork

trapframe

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

proc 2

code

Quantum expired. thread_yield is called to perform context switch.

39 /53

Example: System Calls (15/27)

privileged mode

application
stack frames

fork

user stack

kernel stack

trapframe
mips_trap
syscall
sys_fork
trapframe

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

thread_switch

proc 2

code

thread_yield calls thread_switch.

40 /53

Example: System Calls (16/27)

switchframe
application

trapframe
stack frames

code

fork mips_trap

kernel stack

user stack

syscall

sys_fork

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

proc 2

thread_yield

thread_switch

thread_switch calls switchframe_switch.

41 /53

Example: System Calls (17/27)

o application o o application o trapframe
U stack frames (@] (@] stack frames [w] -
[T [} © © mips_trap
Q T o] 7] o) mainbus
£ Q aQ -
= X interrupt
8 sys_fork handler
[@)]
E thread_switch
o mips_trap
switchframe
mainbus
interrupt
interrupt
handler context
thread_yield switch
proc?

State of current thread saved, context switch occurs.

42 /53

Example: System Calls (18/27)

o application " e application v trapframe
U stack frames (@] (v} stack frames [w] -
T © } © (] mips_trap
] o] o o mainbus
() [0
£ 4 X interrupt
_8 sys_fork handler
(@)}
g thread_yield
=
S .
3
mainbus
interrupt
interrupt
handler
thread_yield
s7ae2
State of new thread restored, return to thread_yield.
o application " trapframe 2 application v trapframe
U stack frames (@] (v} stack frames [w] -
T © S © mips_trap
s i mips_trap i 7
h fork — o — .
o] o [] mainbus
g g syscall g % interrupt
-~ 3 interrupt
sys_fork handler

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

thread_switch

switchframe

proc 2

thread_yield returns to interrupt handler.

44 /53

Example: System Calls (20/27)

application

trapframe
stack frames

mips_trap

fork

user stack
user stack

syscall

kernel stack

sys_fork

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

thread_switch

application
stack frames

switchframe p roc 2

kernel stack

trapframe

mips_trap

mainbus
interrupt

The interrupt handler returns to mainbus_interrupt.

45 / 53

Example: System Calls (21/27)

application

trapframe
stack frames

fork mips_trap

user stack

syscall

4
)
&S]
—
(%2}
—
(7]
wn
>

kernel stack

sys_fork

application
stack frames

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

thread_switch

switchframe p roc 2

trapframe

mips_trap

kernel stack

mainbus_interrupt returns to mips_trap.

46 / 53

Example: System Calls (22/27)

application trapframe
stack frames

trapframe

application
stack frames

fork

mips_trap

user stack

user stack

syscall

kernel stack

kernel stack

sys_fork

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

thread_switch

switchframe p roc 2

mips_trap returns to common_exception.

47 / 53

Example: System Calls (23/27)

application
stack frames

application
stack frames

trapframe

mips_tra
fork ps_trap

user stack

—=
v
©
-
7
S
[0}
0
S

syscall

kernel stack
kernel stack

sys_fork

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

thread_switch

switchframe p roc 2

Thread context is restored from trapframe. Switch from kernel to

user stacks. Switch to unprivileged mode. User code continues
execution.

48 / 53

Example: System Calls (24/27)

3 < 2
: o I S
el 2 z
] e
£ g
-
[«F)
(@)]
g
=
| -
o
proc 2
Suppose the timer interrupt did NOT occur.
49 /53
Example: System Calls (25/27)
if (err) { /* error */
icati tf->tf_vO=err;
application trapframe - ’
ﬁ ﬁ tf->tf_a3=1; J
8 L . jelse{/*noerror*/ | O
0 il mips_trap tf->tf_v0 = retval; 8
o 5 i tf->tf a3 = 0;
_8 4 c syscall }
£ g
o) /* advance PC*/
Q tf->tf_epc+=4;
(@)]
X
=
S
o

proc 2

sys_fork returns to syscall. syscall sets up the return value/error
code and result. It also increments the PC.

50 /53

Example: System Calls (26/27)

application trapframe
8 N 3
o [o I °
)]
< P c
o} S —
£ g
o
Q
(@))]
g
=
| -
o
proc 2
syscall returns to mips_trap.
51 /53
Example: System Calls (27/27)
common_exception
[0x8000 0080
e application "
U stack frames W]]
© T o
+— T O
- & | u
(7] Q jrko
g- : .
Q
~

privileged mode

proc 2

mips_trap returns to common_exception. The trapframe data is
restored. Switch from kernel to user stack. Switch to unprivileged
mode (rfe). User code continues execution.

52 /53

Inter-Process Communication (IPC)

Processes are isolated from each other. But, what if they want to
communicate (share data) with each other?
IPC or inter-process communication is a family of methods used to
send data between processes.
m File: data to be shared is written to a file, accessed by both
processes
m Socket: data is sent via network interface between processes
m Pipe: data is sent, unidirectionally, from one process to
another via OS-managed data buffer

m Shared Memory: data is sent via block of shared memory
visible to both processes

m Message Passing/Queue: a queue/data stream provided by
the OS to send data between processes

53 /53

