Scheduling

round robin, shortest job first, MLFQ,
multi-core scheduling, cache affinity, load balancing

Rob Hackman, Kevin Lanctot

David R. Cheriton School of Computer Science
University of Waterloo

Fall 2022

1/26

Simple Scheduling Model

We are given a set of jobs to schedule.

Only one job can run at a time.

For each job, we are given
m job arrival time (a;)
m job run time (r;)

For each job, we define
m response time: time between the job's arrival and when the
job starts to run
m turnaround time: time between the job's arrival and when the
job finishes running.
m We must decide when each job should run, to achieve some
goal, e.g., minimize average turnaround time, or minimize
average response time.

2/26

First Come, First Served

m jobs run in order of arrival
m simple, avoids starvation
13

i

3 time

o 4+ s 12 ® =

| Job | J1]J2]13]J4]
arrival (aj) 00|05
run time (r;) || 5 | 8 | 3 | 2

3/26

Round Robin

m preemptive FCFC
m OS/161's scheduler

F —

> time

T Job [J1[J2]J3 | 4]
arrival (aj) 0] 0|05
run time (r;) || 5 | 8 | 3 | 2

4/26

Shortest Job First

m run jobs in increasing order of runtime
®m minimizes average turnaround time
m starvation is possible

n
2
i e
: : > time
0 4 8
] Job
arrival (a;)

run time (r;)

5/26

Shortest Remaining Time First

m preemptive variant of SJF; arriving jobs preempt running job
m select one with shortest remaining time
m starvation still possible

g:time
0 4 8

] Job
arrival (a;)
run time (r;)

6/26

CPU Scheduling

m In CPU scheduling, the “jobs” to be scheduled are the
threads.

m CPU scheduling typically differs from the simple scheduling
model:
m the run times of threads are normally not known
m threads are sometimes not runnable: when they are blocked
m threads may have different priorities
m The objective of the scheduler is normally to achieve a
balance between
m responsiveness (ensure that threads get to run regularly),
m fairness,
m efficiency

How would FCFS, Round Robin, SJF, and SRTF handle blocked
threads? Priorities?

7/26

Multi-level Feedback Queues

m the most commonly used scheduling algorithm in
modern times

m objective: good responsiveness for interactive threads,
non-interactive threads make as much progress as possible

m key idea: interactive threads are frequently blocked, waiting
for user input, packets, etc.

m approach: given higher priority to interactive threads, so that

they run whenever they are ready.

m problem: how to determine which threads are interactive and
which are not?

MLFQ is used in Microsoft Windows, Apple macOS, Sun Solaris,
and many more. It was used in Linux, but no longer is.

8/26

MLFQ Algorithm

highest prory m n round-robin ready queues where the priority of
Q; > Qj if i >j
m threads in Q; use quantum g; and q; < g; if i >
m scheduler selects a thread from the highest
priority queue to run
m threads in Q,_1 are only selected if @, is empty
S m preempted threads are put onto the back of the

next lower-priority queue

longest quantum m a thread from Q) is preempted, it is pushed
onto Qn—_1
m when a thread wakes after blocking, it is put
onto the highest-priority queue

shortest quantum
on preempt

Qn-2,gn-2

Since interactive threads tend to block frequently, they will " live” in
higher-priority queues while non-interactive threads sift down to the
bottom.

9/26

3-Queue MLFQ Example

ready (Q3) p\'eempt

ready (Q2)

run

ready (Q1
/

preempt

When do threads in Q1 run if Q3 is never empty?
To prevent starvation, all threads are periodically placed in the
highest-priority queue.

10 /26

3-Queue MLFQ Example

ready (Q3)

ready (Q2)

run

ready (Q1
A

preempt

Two threads, T1 and T2, start in Q3.

11/26

3-Queue MLFQ Example

ready (Q3)

ready (Q2)

ready (Q1
/

preempt

T1 is selected to run.]

12 /26

3-Queue MLFQ Example

blocked

ready (Q3)

ready (Q2)

run

ready (Q1
/ preempt

T1 is preempted and pushed onto the back of Q2. T2 is selected to
run.

13 /26

3-Queue MLFQ Example

ready (Q3)

ready (Q2)

run

run

ready (Q1
A

preempt

[While T2 is running a new thread, T3, arrives.]

14 /26

3-Queue MLFQ Example

ready (Q3)

ready (Q2)

ready (Q1
A

preempt

T2 terminates. T3 is selected.]

15 /26

3-Queue MLFQ Example

ready (Q3)

ready (Q2)

ready (Q1)
preempt

T3 blocks. T1 is selected.

16 /26

3-Queue MLFQ Example

ready (Q3)

ready (Q2)

ready (Q1
A

run

preempt

sleep

run

[T1 is preempted, it is pushed onto Q1.

17 /26

3-Queue MLFQ Example

sleep

blocked

ready (Q3)

ready (Q2)

ready (Q1)
preempt

T1 is selected.

18 /26

3-Queue MLFQ Example

run

ready (Q3) p\'eempt

ready (Q2)

run

ready (Q1
/

preempt

T3 is woken by T1 causing T1 to be preempted. Many variants
of MLFQ will preempt low-priority threads when a thread wakes to
ensure a fast response to an event.

19/26

3-Queue MLFQ Example

ready (Q3)

ready (Q2)

run

ready (Q1
A

preempt

T3 is selected.]

20/26

Linux Completely Fair Scheduler (CFS) - Main Ideas

m each thread can be assigned a weight

m the goal of the scheduler is to ensure that each thread gets a
“share” of the processor in proportion to its weight

m basic operation

m track the “virtual” runtime of each runnable thread
m always run the thread with the lowest virtual runtime
m virtual runtime is actual runtime adjusted by the thread
weights
m suppose w; is the weight of the ith thread
m actual runtime of ith thread is multiplied by V’V "
m virtual runtime advances slowly for threads with high weights,
quickly for threads with low weights

In MLFQ the quantum depended on the thread priority. In CFS, the
quantum is the same for all threads and priorities.

21/26

CFS Example

Suppose the total weight of all threads in the system is 50 and the
quantum is 5.

Time Thread Weight Actual Runtime Virtual Runtime

t 1 25 5

2 20 5

3 5 5
t+5 1 25

2 20

3 5

Which thread is selected at t? Which thread at t + 57

22 /26

CFS Example

Suppose the total weight of all threads in the system is 50 and the
quantum is 5.
Time Thread Weight Actual Runtime Virtual Runtime

t+5 1 25 5 5%50/25 =10
2 20 5 5%50/20 = 12.5
3 5 5 5%50/5 =50
T1 is selected
t+5 1 25 10 10%50/25 = 20
2 20 5 12.5
3 5 5 50

T2 is selected
Which thread is selected at t? Which thread at t + 57

23 /26

Scheduling on Multi-Core Processors _

per core ready queue vs. shared ready queue

Which offers better performance? Which one scales better?

24 /26

Scalability and Cache Affinity

m Contention and Scalability

access to shared ready queue is a critical section, mutual
exclusion needed

as number of cores grows, contention for ready queue becomes
a problem

m per core design scales to a larger number of cores
m CPU cache affinity

as thread runs, data it accesses is loaded into CPU cache(s)
moving the thread to another core means data must be
reloaded into that core’s caches

as thread runs, it acquires an affinity for one core because of
the cached data

per core design benefits from affinity by keeping threads on the
same core

shared queue design does not

25 /26

Load Balancing

m in per-core design, queues may have different lengths
m this results in load imbalance across the cores
m cores may be idle while others are busy
m threads on lightly loaded cores get more CPU time than
threads on heavily loaded cores
m not an issue in shared queue design

m per-core designs typically need some mechanism for thread
migration to address load imbalances

m migration means moving threads from heavily loaded cores to
lightly loaded cores

26 /26

