Threads and Concurrency

threads, concurrent execution, timesharing,
context switch, interrupts, preemption

Rob Hackman, Kevin Lanctot

David R. Cheriton School of Computer Science
University of Waterloo

Fall 2022

1/41

What is a thread?

. a sequence of instructions.

m A normal sequential program consists of a single thread of
execution.

m Threads provide a way for programmers to express
concurrency in a program.

m In threaded concurrent programs there are multiple threads of
execution, all occuring at the same time.

m Threads may perform the same task.
m Threads may perform different tasks.

Recall: Concurrency

multiple programs or sequences of instructions running, or ap-
pearing to run, at the same time.

2/41

Why Threads?

Resource Utilization: blocked/waiting threads give up
resources, i.e., the CPU, to others.

Parallelism: multiple threads executing simultaneously;

improves performance.

Responsiveness: dedicate threads to Ul, others to

loading/long tasks.

Priority: higher priority; more CPU time, lower priority; less

CPU time.

Modularization: organization of execution

tasks/responsibilities.

o]

[~

]

Blocking

Threads may block, ceasing execution for a period of time, or,
until some condition has been met. When a thread blocks, it is not
executing instructions—the CPU is idle. Concurrency lets the CPU
execute a different thread during this time. CPU time is money!

3/41

0S/161 Threaded Concurrency Examples

Key ideas from the examples:

A thread can create new threads using thread fork

New theads start execution in a function specified as a
parameter to thread _fork

The original thread (which called thread_fork) and the new
thread (which is created by the call to thread fork) proceed
concurrently, as two simultaneous sequential threads of
execution.

All threads share access to the program’s global variables
and heap.

Each thread's stack frames are private to that thread; each
thread has its own stack.

In the OS

.. a thread is represented as a structure or object.

4 /41

0S/161's Thread Interface

m create a new thread:
int thread_fork(

const char *name, // name of new thread

struct proc *proc, // thread’s process

void (*func) // new thread’s function
(void *, unsigned long),

void *datal, // function’s first param

unsigned long data2 // function’s second param

)3

m terminate the calling thread:
void thread_exit(void);

m volutarily yield execution:
void thread_yield(void);

[See kern/include/thread.h]

5/41

Other Thread Libraries and Functions

m join a common thread function to force one thread to block
until another finishes; NOT offered by OS/161

m pthreads POSIX threads, a well-supported, popular, and
sophisticated thread API

m OpenMP a cross-platform, simple multi-processing and
thread API

m GPGPU Programming general-purpose GPU programming
APIs, e.g. nVidia's CUDA, create/run threads on GPU instead
of CPU

Concurrency and Threads

m originated in 1950s to improve CPU utilization during 1/0
operations

m "modern” timesharing originated in the 1960s

6/41

Review: Sequential Program Execution

address space

data
PC SP
program ODO " O stack
counter pointer

CPU reqisters

The Fetch/Execute Cycle
fetch instruction PC points to
decode and execute instruction
increment the PC
7/41

Review: MIPS Registers

num | name | use num | name | use

0 z0 | always zero 24-25 | t8-t9 | temps (caller-save)

1 at assembler reserved 26-27 | k0-k1 | kernel temps

2 v0 return val/syscall # 28 gp global pointer

3 vl return value 29 sp stack pointer

4-7 | a0-a3 | subroutine args 30 s8/fp | frame ptr (callee-save)
8-15 | t0-t7 | temps (caller-save) 31 ra return addr (for jal)
16-23 | s0-s7 | saved (callee-save)

m conventions enforced in compiler; used in OS

m caller-save: it is the responsibility of the calling function to
save/restore values in these registers

m callee-save: it the the responsibility of the called function to
save/restore values in these registers before/after use

callee/caller save strategy attempts to minimize the callee saving
values the caller does not use

8 /41

Review: The Stack _

F A
stack unch() {
* .« ..
to FuncBQ) ;
OXFFFF FFFF
other
stack FuncB() {
frames
FuncCQ) ;

Functions push argu-
ments (a0-a3), return
address, local vari-
ables, and temporary-
use registers onto the

+ stack.

to 0x0

9/41

Concurrent Program Execution (Two Threads)

thread 2 CPU registers

program
counter

thread

address space [

stack
pointer

program
counter

thread 1 CPU registers

Conceptually, each thread executes sequentially using its private reg-
ister contents and stack.

10/ 41

Implementing Concurrent Threads

What options exist?

Hardware support. P processors, C cores, M multithreading
per core = PCM threads can execute simultaneously.

Timesharing. Multiple threads take turns on the same
hardware; rapidly switching between threads so all make
progress.

Hardware support + Timesharing. PCM threads running
simultaneously with timesharing.

Example: Intel i9-9900X

.. 10 cores, each core can run 2 threads (multithreading degree).
Therefore, P =1, C =10, and M = 2, so PCM = 20 threads can
run simultaneously.

Note that while cores of a single processor share caches (L2, L3),
threads execute separately.

11/41

Timesharing and Context Switches

m When timesharing, the switch from one thread to another is
called a context switch
m What happens during a context switch:
decide which thread will run next (scheduling)
save register contents of current thread
load register contents of next thread
m Thread context must be saved/restored carefully, since
thread execution continuously changes the context

Timesharing

.. each thread gets a small amount of time to execute on the CPU,
when it expires, a context switch occurs. Threads share the CPU,
giving the user the illusion of multiple programs running at the same
time.

12 /41

Context Switch on the MIPS (1 of 2)

/* See kern/arch/mips/thread/switch.S */

switchframe_switch:
/* a0: address of switchframe pointer of old thread. */
/* al: address of switchframe pointer of new thread. */

/* Allocate stack space for saving 10 registers. 10%4 = 40 */
addi sp, sp, -40

sw ra, 36(sp) /* Save the registers */
sw gp, 32(sp)

sw s8, 28(sp)

sw s6, 24(sp)

sw sb, 20(sp)

sw s4, 16(sp)

sw s3, 12(sp)

sw s2, 8(sp)

sw sl, 4(sp)

sw s0, 0(sp)

/* Store the old stack pointer in the old thread */
sw sp, 0(a0)

13 /41

Context Switch on the MIPS (2 of 2)

/* Get the new stack pointer from the new thread */
1w sp, 0(al)
nop /* delay slot for load */

/* Now, restore the registers x/
lw sO, 0(sp)

1w s1, 4(sp)

1w s2, 8(sp)

1w s3, 12(sp)

1w s4, 16(sp)

1w s5, 20(sp)

lu s6, 24(sp)

lw s8, 28(sp)

1w gp, 32(sp)

lw ra, 36(sp)

nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 40 /* in delay slot */
.end switchframe_switch

14 / 41

Switchframe Notes

m switchframe switch is called by C function thread_switch

m thread_switch is the caller; it will save/restore the
caller-save registers

m switchframe_switch is the callee; it must save/restore the
callee-save registers

m switchframe_switch, saves callee-save registers to the old
thread stack; it restores the callee-save registers from the
new threads stack

m MIPS R3000 is pipelined; delay-slots are used to protect

against:
m load-use hazards, where loaded values are used in the next
instruction
m control hazards, where we don’t know which instruction to
fetch next

15 / 41

What Causes Context Switches?

m the running thread calls thread_ yield
m running thread voluntarily allows other threads to run
m the running thread calls thread_exit
m running thread is terminated
m the running thread blocks, via a call to wchan_sleep
m more on this later ...
m the running thread is preempted
m running thread involuntarily stops running

The OS

strives to maintain high CPU utilization. Hence, in addition
to timesharing, context switches occur whenever a thread ceases to
execute instructions.

16 / 41

Thread States

preemption or
thread_yeild

thread_exit

ready pool dispatch

resource not available
wchan_sleep

resource available
wake_all/one

wait channels

running: currently executing
ready: ready to execute
blocked: waiting for something, so not ready to execute.

17 /41

0S/161 Thread Stack after Voluntary Context Switch

stack
4
to
OXFFFF FFFF
m program calls thread yield,
other to yield the CPU
stack m thread yield calls
frames Stac't‘h thread_switch, to perform a
9o context switch
m thread_switch chooses a new
thread, calls
switchframe switch to
perform low-level context switch
thread_switch
switchframe t°$‘°

18 /41

Timesharing and Preemption

m timesharing—concurrency achieved by rapidly switching
between threads
m how rapidly? impose a limit on CPU time, the scheduling
quantum
m the quantum is an upper bound on how long a thread can
run before it must yield the CPU

m how do you stop a running thread, that never yields, blocks or
exits when the quantum expires?

m preemption forces a running thread to stop running, so that
another thread can have a chance

m to implement preemption, the thread library must have a
means of “getting control” (causing thread library code to be
executed) even though the running thread has not called a
thread library function

m this is normally accomplished using interrupts

19 /41

Review: Interrupts

m an interrupt is an event that occurs during the execution of
a program

m interrupts are caused by system devices (hardware), e.g., a
timer, a disk controller, a network interface

m when an interrupt occurs, the hardware automatically
transfers control to a fixed location in memory

m at that memory location, the thread library places a procedure
called an interrupt handler
m the interrupt handler normally:
create a trap frame to record thread context at the time of
the interrupt
determines which device caused the interrupt and performs
device-specific processing
restores the saved thread context from the trap frame and
resumes execution of the thread

20/ 41

0S/161 Thread Stack after in Interrupt _

stack
to
OXFFFF FFFF
other
stack
frames stack
growth

interrupt!

trap frame

21/41

Preemptive Scheduling

A preemptive scheduler uses the scheduling quantum to
impose a time limit on running threads

Threads may block or yield before their quantum has expired.
Periodic timer interrupts allow running time to be tracked.

If a thread has run too long, the timer interrupt handler
preempts the thread by calling thread yield.

The preempted thread changes state from running to ready,
and it is placed on the ready queue.

Each time a thread goes from ready to running, the runtime
starts out at 0. Runtime does not accumulate.

0S/161 threads use preemptive round-robin scheduling.

22 /41

0S/161 Thread Stack after Preemption _

stack
other to
OXFFFF FFFF
stack
frames
timer interrupt!
trap frame stack
growth
. to 00
switchframe °+X

23 /41

Two-Thread Example - 1

Thread 1 stack Thread 2 stack
1
OXFFFF FFFF program program
stack stack
frames frames
stack thread_yield
growth
thread_switch
to 0x0
4

Thread 1 is RUNNING. Thread 2 is READY, having called
thread_yield previously.

24 /41

Two-Thread Example - 2

Thread 1 stack Thread 2 stack
T
OXFFFF FFFF program program
stack stack
frames frames
. . . L
timer interrupt! stack > thread_yield
growth
thread_switch
to 0x0
A4

A timer interrupt occurs.

25 /41

Two-Thread Example - 3

Thread 1 stack Thread 2 stack
T
OXFFFF FFFF program program
stack stack
frames frames
. . ,
timer interrupt! stack tra f thread_yield
growth rap frame
thread_switch
to 0x0
A4

Thread 1 is preempted, a trapframe is created to save its context.

26 /41

Two-Thread Example - 4

to
OXFFFF FFFF

timer interrupt!
stack

growth

to 0x0

Thread 1 stack Thread 2 stack
program program
stack stack
frames frames
T — thread_yield

interrupt handler
stack frame(s)

thread_switch

The timer interrupt handler determines what happened, and, calls

the appropriate handler.

27 /41

Two-Thread Example - 5

to
OXFFFF FFFF

timer interrupt!
stack

growth

to 0x0

Thread 1 stack Thread 2 stack
program program
stack stack
frames frames
T — thread_yield

interrupt handler
stack frame(s)

thread_yield

thread_switch

Thread 1 has exceeded its quantum. Yield the CPU to another

thread, call thread_yield.

28 /41

Two-Thread Example - 6

Thread 1 stack Thread 2 stack
T
OXEFFF FFFF program program
stack stack
frames frames
timer interrupt! .
stack thread_yield
growth trap frame
thread_switch
interrupt handler
thread_yield
thread_switch
to 0x0
v

High-level context switch: choose new thread, save caller-save reg-
isters.

29 /41

Two-Thread Example - 7

4

to

OXFFFF FFFF

stack
growth

to 0x0

v

Thread 1 stack

Thread 2 stack

program
stack
frames

interrupt handler
stack frame(s)

thread_yield

thread_switch

program
stack
frames

thread_yield

thread_switch

[Low-level context switch. Save callee-save registers.

30 /41

Two-Thread Example - 8

Thread 1 stack Thread 2 stack
to
OXFFFF FFFF program program
stack stack
frames frames

thread_yield

stack
growth

trap frame

thread_switch

interrupt handler
stack frame(s)

thread_yield

thread_switch

to 0x0
*

Thread 2 is now RUNNING, Thread 1 is now READY. Thread 2
returns from low-level context switch, restoring callee-save registers.

31/41

Two-Thread Example - 9

Thread 1 stack Thread 2 stack
to
OXFFFF FFFF program program
stack stack
frames frames

interrupt handler
stack frame(s)

thread_yield

thread_switch

to 0x0
v switchframe

Return from high-level context switch, restoring caller-save registers.

32/41

Two-Thread Example - 10

to
OXFFFF FFFF

Thread 1 stack Thread 2 stack
program program

stack stack

frames frames

stack
growth

trap frame

interrupt handler
stack frame(s)

thread_yield

to 0x0
*

thread_switch

its regular program.

Return from yield. Context is fully restored. Thread 2 is now running

33 /41

Two-Thread Example - 11

to
OXFFFF FFFF

stack
growth

to 0x0

v

Thread 1 stack Thread 2 stack
program program
stack stack
frames frames
thread_yield

interrupt handler
stack frame(s)

thread_yield

thread_switch

Thread 2 yields.

34 /41

Two-Thread Example - 12

to
OXFFFF FFFF

stack
growth

to 0x0

v

Thread 1 stack Thread 2 stack
program program
stack stack
frames frames
thread_yield

interrupt handler
stack frame(s)

thread_yield

thread_switch

thread_switch

High-level context

switch.

35 /41

Two-Thread Example - 13

to
OXFFFF FFFF

stack
growth

to 0x0

v

Thread 1 stack Thread 2 stack
program program
stack stack
frames frames
thread_yield

interrupt handler
stack frame(s)

thread_yield

thread_switch

thread_switch

switchframe

Low-level context switch.

36 /41

Two-Thread Example - 14

to
OXFFFF FFFF

stack
growth

to 0x0

Thread 1 stack Thread 2 stack
program program
stack stack
frames frames
thread_yield

interrupt handler
stack frame(s)

thread_yield

thread_switch

thread_switch

Thread 1 is now RUNNING. Thread 2 is now READY. Return
from low-level context switch.

37/41

Two-Thread Example - 15

Thread 1 stack Thread 2 stack
to
OXFFFF FFFF program program
stack stack
frames frames
thread_yield

tack
gsr:wcnh trap frame

interrupt handler
stack frame(s)

thread_yield

to 0x0

thread_switch

Return from high-level context switch.

38 /41

Two-Thread Example - 16

Thread 1 stack Thread 2 stack
to
OXFFFF FFFF program program
stack stack
frames frames

thread_switch

interrupt handler

to 0x0

Return from yield.

39 /41

Two-Thread Example - 17

to
OXFFFF FFFF

stack
growth

to 0x0

Thread 1 stack Thread 2 stack
program program
stack stack
frames frames
thread_yield

thread_switch

Return from interrupt handling functions.

40 /41

Two-Thread Example - 18

Thread 1 stack Thread 2 stack
to
OXFFFF FFFF program program
stack stack
frames frames
stack thread_yield
growth
thread_switch
to 0x0
¥

Restore thread 1's context (stored in the trapframe), return to regular
program.

41/41

