CS350 Operating Systems Fall 2022
Assignment 0

1 Introduction
The objective of this assignment is for you to familiarize yourself with OS/161 and Sys/161.

0S/161: OS/161 is a simple operating system kernel, which is made available to you along with a small set
of user-level libraries and programs that can be used for testing. The baseline OS/161 that we
distribute to you has very limited functionality. Each of the CS350 programming assignments will ask
you to improve OS/161 in some way to add additional functionality to the baseline.

Sys/161: Sys/161 is a machine simulator. It emulates the physical hardware on which OS/161 runs. Apart
from floating point support and certain issues relating to cache management, it provides an accurate
emulation of a server with a MIPS R3000 processor. You will use Sys/161 each time you want to run
0S/161. However, you are neither expected nor permitted to make any changes to Sys/161.
Additional information about the Sys/161 simulator can be found at https://student.cs.uwaterloo.
ca/~cs350/common/sysl61lmanuall.

Before you can complete this assignment, you will need to obtain and build a copy of OS/161. Sys/161
and the toolchain needed to build and debug OS/161 and its applications are pre-installed and ready to use
in the linux.student.cs environment. If you are planning to work on your own machine, rather than in the
linux.student.cs environment, you will also need to obtain and install both Sys/161 and the toolchain before
you will be able to build, run, or debug OS/161 code.

2 Revision Control

The OS/161 kernel alone consists of more than 30,000 lines of C code. It is non-trivial to build and
manage OS/161. You will find that revision control will help you manage your OS/161 code and enable
tracking changes and reverting code efficiently.

In this course, we encourage you to use Git for revision control. The course web page (see “Assignment
Information”) includes references to links to various resources on Git. We have a tutorial on Git,
https://student.cs.uwaterloo.ca/~cs350/common/gitprimer/gitprimer_F17.pdf. Git is available on the linux
student environment and as University of Waterloo students you have access to enterprise edition of
gitlab at https://gitlab.uwaterloo.ca/users/sign_in.

3 Preliminaries

There are two options for setting up OS/161 and Sys/161. The first uses Docker containers and the second
does not. You can use either approach.

3.1 Using Docker Containers

Sys/161 and the toolchain needed to build and debug OS/161 and its applications are pre-installed
and ready to use in the linux.student.cs environment. However, students often find that working in the
student environment is cumbersome and inconvenient. We have created a Docker container that provides
Sys/161 and the toolchain required to build, run, debug and test your programs.

Install a copy of OS/161 in your linux.student.cs account. Using the step-by-step installation in-
structions at https://www.student.cs.uwaterloo.ca/~cs350/common/Install161.html

Build and run OS/161 in your linux.student.cs account. Once you have installed OS/161, can use the

1


https://student.cs.uwaterloo.ca/~cs350/common/sys161manual/
https://student.cs.uwaterloo.ca/~cs350/common/sys161manual/
https://www.student.cs.uwaterloo.ca/~cs350/W22/
https://student.cs.uwaterloo.ca/~cs350/common/gitprimer/gitprimer_F17.pdf
https://gitlab.uwaterloo.ca/users/sign_in
https://www.student.cs.uwaterloo.ca/~cs350/common/Install161.html

guide at https://www.student.cs.uwaterloo.ca/~cs350/common/WorkingWith161.html to learn how to
modify, build, run, and debug OS/161 code. Read and understand this before you start working on the
programming assignment.

Place OS/161 source code under revision control using Git Use Git to place the fresh copy of OS/161 in
the linux student environment under revision control. That is, initialize the 0s161-1.99 directory with
git. You will find the The Git Primer Slides mentioned in the previous section helpful for setting up
Git specifically for the CS350 assignments.

Create remote GitLab repository for your OS/161 source code. You should host your CS350 pro-
gramming assignments on a private remote repository on GitLab. You can use this repository to push
updates from your local environment to the remote repository and pull the updates from the remote
repository into your account in the linux.student.cs environment, or vice versa. Refer to the Git Primer
Slides for the instructions.

Install cs350-container on your local machine. We have a Docker container for CS350, which includes
Sys/161 and the toolchain required to build, run, or debug OS/161 code. The cs350-container is
available as a public repository on UW GitLab. You should clone the cs350-container repository and
follow the instructions in the README.md file to install the cs350-container and run code through
the cs350-container. You will find that the cs350-container gives you a similar environment to the
linux student environment with the convenience of working on your local machine. You are
encouraged, not required, to learn about Docker.

Once you have completed these steps, you will have setup the environment for working on the
programming assignments for CS350. You can now continue to work on the rest of the components
of this pogramming assignment and test them locally using the testing and evaluation scriptsin
the cs350-container.

To submit your programming assignments, you can push updates from your local environment to
the remote repository on Gitlab and pull the updates into your linux.student.cs environment from the
same remote repository. You must submit your programming assignments from the linux.student.cs
environment using the ¢s350_submit script. The ¢s350_submit command and submission instructions
are described in detail in Section 5.

3.2 Without Docker Containers

Not all systems can use Docker containers (for example, version of Windows prior to Window 10). Without
Docker on your local machine you cannot use the cs350-container. However, you are still strongly
encouraged to use Git for version control and Gitlab for hosting your programming assignments, so that
you can work conveniently on your local environment.

In this case, before you start working on CS350 programming assignments, you must complete the
following steps:

1. Install a copy of OS/161 in your linux.student.cs account using the step-by-step instructions at
https://www.student.cs.uwaterloo.ca/~cs350/common/Install161.html.
For those working on their own machines, there are instructions at
https://www.student.cs.uwaterloo.ca/~cs350/common/Install161NonCS.html.
However, there is limited support from CS350 staff for local machines.

2. Once you have installed OS/161, you will need to learn how to to modify it, build it, run it, and
debug it. There is a detailed guide at
https://www.student.cs.uwaterloo.ca/~cs350/common/WorkingWith161.html.

Read and understand this before you start working on this assignment.

3. Place OS/161 source code under revision control using Git. Use Git to place the fresh copy of OS/161
in the linux student environment under revision control. See the tutoral mentioned in Section 2.


https://www.student.cs.uwaterloo.ca/~cs350/common/WorkingWith161.html
https://student.cs.uwaterloo.ca/~cs350/S22/reading.shtml#extra_reading
https://student.cs.uwaterloo.ca/~cs350/S22/reading.shtml#extra_reading
https://student.cs.uwaterloo.ca/~cs350/S22/reading.shtml#extra_reading
https://git.uwaterloo.ca/krhancoc/cs350-container
https://www.docker.com/
https://www.student.cs.uwaterloo.ca/~cs350/common/Install161.html
https://www.student.cs.uwaterloo.ca/~cs350/common/Install161NonCS.html
https://www.student.cs.uwaterloo.ca/~cs350/common/Install161NonCS.html
https://www.student.cs.uwaterloo.ca/~cs350/common/WorkingWith161.html
https://www.student.cs.uwaterloo.ca/~cs350/common/WorkingWith161.html

4 Assignment Requirements
For the assignment, you are required to make two minor changes to the OS/161kernel:

1 Customize the OS/161 kernel boot output
2 Add a new command to OS/161 kernel menu

The following subsections will be your guide for understanding and completing the OS/161 kernel pro-
gramming component. You are encouraged to read the code that is discussed in these subsections to begin
to understand how OS/161 works.

4.1 Customize the 0S/161 Kernel Boot Output
When 0S/161 boots, it produces output that looks similar to the following:
sysl61: System/161 release 1.99.06, compiled Sep 9 2013 23:13:03

0S/161 base system version 1.99.05
Copyright (c) 2000, 2001, 2002, 2003, 2004, 2005, 2008, 2009

President and Fellows of Harvard College. All rights reserved
Put-your—group—name-here’ s system version 0 (ASSTO #17)

4916k physical memory available
Device probe...

lamebusO (system main bus)
emu0 at lamebusO

ltrace0 at lamebusO
ltimer0 at lamebusO

beep0 at ltimer0

rtclock0 at ltimer0
lrandom0 at lamebus0
random0 at lrandomQ

1hd0 at lamebusO

1hdl at lamebusO

lser0 at lamebusO

con0 at Iser0

cpuO: MIPS r3000
0S/161 kernel [? for menu]:

Note the line that says “Put-your-group-name-here's system ...”. Your first task is to change OS/161 so
that the kernel identifies itself as your kernel when it boots. For example, if your name was Liberty Valance,
your kernel should say “Liberty Valance's system ...”.

Once you have done this, make sure that you can re-build and run OS/161 with your customized boot
output.

Hint: You should read the file kern/startup/main.c. In the future, you can search for relevant strings
using grep in a specific 0s161-1.99 directory or subdirectory.
4.2 Add a Kernel Menu Command in OS/161
The OS/161 kernel includes a simple system that allows debugging messages to be displayed when the

3



kernel runs. There can be different types of debug messages, and the kernel can be told to display only
messages of certain types. For example, the file kern/thread/thread.c includes the statement

DEBUG (DB_THREADS, “Forking thread: %s\n”, name) ;

This defines a debugging message of type DB_THREADS.

The debugging mechanism is implemented in the file kern/include/1ib. h. This file also includes defi-
nitions of all of the pre-defined debugging message types, such as DB_THREADS. There is a kernel global
variable, dbflags, which defines which types of debugging messages should be displayed when the kernel
runs (see kern/1ib/kprintf. c). In the baseline code, dbflags is set to zero, meaning that no debugging
messages are displayed.

After the OS/161 kernel boots, it displays a prompt and waits for an input:

0S/161 kernel [? for menu]:

If you type ?, you should get a list of available commands and sub-menus, one of which is the operations
sub-menu. For this assignment, your are required to add a new command to OS/161 Kkernel’s
operations sub-menu. The new command, which must be called dth, should enable the output of
debugging messages of type DB_THREADS. If such messages are already enabled, the command should have
no effect. Thus, any kernel commands that are run after dth should run with DB_THREADS debugging
messages enabled.

To do this, you will need to understand how the debug message mechanism works and how the kernel
menu system works. The latter is implemented in the file kern/startup/menu. c. You should be able to
complete this assignment by changing only this single file.

To test your new kernel option, we will use it to run one or more of the kernel’s built-in thread tests with
DB_THREADS debugging enabled using your new dth command. The kernel has several simple thread tests
(e.g., tt1, tt2, tt3) that can be run from the kernel menu prompt.

For example, without DB_THREADS debugging enabled, thread test 2 (tt2) produces output like this:

0S/161 kernel [? for menu]: tt2Starting
thread test 2..

0123456701235674

Thread test 2 done

Operation took 0.662769000 seconds

However, if DB_THREADS debugging has been enabled by running your new dth command, this test should
instead produce output similar to this:

0S/161 kernel [? for menu]: tt2Starting
thread test 2..
Forking thread: threadtest0

FOorking tOhread: threadtestl
Florking tlhread: threadtest?2
F2orking t2hread: threadtest3
F3orking th3read: threadtest4
F4orking thd4read: threadtestb
F5orking tbhread: threadtest6
F6orking t6bhread: threadtest777
Thread test 2 done

Operation took 0.717793640 seconds

The debug messages are produced by the DEBUGstatements in kern/thread/thread. c.



S5 Testing Your Programming Assignment
The expected flow of control when working on an assignment in CS350 is as follows:

1. You are working on your local machine and using cs350-container to build, run, test and
debugOS/161 and linux programs.

2. You push updates to a remote repository
3. You pull updates from remote repository into your linux.student.cs environment.

4. You submit your programming assignments from the linux.student.cs environment.

You can test your code and verify that is works correctly before you submit it for grading in the ¢s350-
container, we have provided the /assignments folder that will hold all the public testing and evaluation
scripts used for each assignment. You can use these scripts to run and verify that your code works as
expected before you submit it. Instructions about the script are found in the README. md file in the cs350-
container repository.

We are running auto-grading scripts using public and private tests, so once you submit your code, you
will receive feedback and scores for the different components of the assignment. You can submit multiple
times, however, each submission completely replaces any previous submissions that you have made for the
same assignment.

You are encouraged to submit early and often. Nearing a deadline, the submit server can become
busyor at worst be unavailable due to technical issues.

6 Submitting Your Assignment

To submit your work, you must use the ¢s350_submit command in the linux.student.cscomputing
environment (i.e. not submit).

The usage is as follows
% usage: ¢s350 submit <assign dir> <assign num type>
For Assignment 0:

o the assign dir is the path to your os161-1. 99 folder, and the
e assign num type iS ASSTO.

When you execute the c¢s350_submit command, you should see output that looks something like this:

% cs350 submit cs350-student/cs350-0s161/0s161-1.99/ ASSTO
Please wait as we grade your assignment

Section Name Marks Received Out Of Comments
Added Name 0.0 2 Name not changed
Added Kernel Menu 0.0 3 dth command not found or failed

A cumulative log can be found here — ASSTO. log
We will always take the highest grade from all submissions as the final grade
Note: All submissions are stored and persisted and checked for plagiarism after the due date

The argument assign_dir in the cs350_submit command, packages up your OS/161 kernel code and
submits it to the course account using the regular submit command. This assignment only briefly
summarizes what ¢s350_submit does. You can (and should) learn more on-line by reading
https://www.student.cs.uwaterloo.ca/~cs350/common/SubmitAndCheck.html. Look carefully at the
output from ¢s350_submit. It is a good idea to run the c¢s350_submitcommand like this:

5



¢s350 submit cs350-student/a0 ASSTO | tee submitlog. txt

This format will run the command and also save a copy of all of the output into a file called
submitlog. txt, which you can inspect if there are problems. This is handy when there is more than
a screen full of output.

You may submit multiple times. Each submission completely replaces any previous submissions
that you may have made for this assignment.

7 Checking Your Grade

You can run the following command from your linux student environment:

¢s3b0 _grade <assign num_type>

Where the assign_num_type is the same assign_num_type, you used when submitting your assignment. For
example, for checking your grades for Assignment 0, the command and output should be similar to:

% cs350 grade ASSTO

Grade for student — kzillehu — and assignment — ASSTO: 0.00 at Sun Jan 16 20:42:16 2022



