File Systems 1

Files and File Systems

o files: persistent, named data objects

data consists of a sequence of numbered bytes

alternatively, a file may have some internal structure, e.gle may
consist of sequence of numbered records

file may change size over time

file has associated meta-data (attributes), in additiohddite name

* examples: owner, access controls, file type, creation acekac
timestamps

o file system: a collection of files which share a common nameespa

— allows files to be created, destroyed, renamed,
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File Interface

open, close

— open returns a file identifier (or handle or descriptor), Wwhicused in
subsequent operations to identify the file. (Why is this (®ne

read, write

— must specify which file to read, which part of the file to reaaj ahere to
put the data that has been read (similar for write).

— often, file position is implicit (why?)

e seek

get/set file attributes, e.g., Unbxst at, chnod
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File Read

fileoffset (implicit)
vaddr

ﬁ length

length

virtual address
space

file

read(filel D, vaddr, |ength)
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File Position

may be associated with the file, with a process, or with a figedptor (Unix
style)

read and write operations
— start from the current file position

— update the current file position

this makes sequential file I/O easy for an application to estju

for non-sequential (random) file I/O, use:

— seek, to adjust file position before reading or writing

— a positioned read or write operation, e.g., Upixead, pwite:
pread(fileld,vaddr,|ength,filePosition)
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Sequential File Reading Example (Unix)

char buf[512];
int i;
int f = open("nyfile", O RDONLY);
for(i=0; i<100; i++) {
read(f, (void =)buf,512);

}
cl ose(f);
Read the first 00 x 512 bytes of a file512 bytes at a time.
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File Reading Example Using Seek (Unix)

char buf[512];
int i;
int f = open("nyfile", O RDONLY);
| seek(f,99x512, SEEK SET);
for(i=0; i<100; i++) {

read(f, (void *)buf, 512);

| seek(f,-1024, SEEK _CUR);
}

cl ose(f);

Read the firstl00 « 512 bytes of a file,512 bytes at a time, in
reverse order.
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File Reading Example Using Positioned Read

char buf[512];
int i;
int f = open("nyfile", O RDONLY);
for(i=0; i<100; i+=2) {
pread(f, (void *)buf,512,i*512);

cl ose(f);

Read every secondl2 byte chunk of a file, untib0 have been

read.
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Memory-Mapped Files

e generic interface:

vaddr «— mmap(file descriptor,fileoffset,|ength)
munmap( vaddr, | engt h)

e nmmap call returns the virtual address to which the file is mapped

e nmunnmap call unmaps mapped files within the specified virtual addrasge

Memory-mapping is an alternative to the read/write file rifatee.
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Memory Mapping lllustration

fileoffset
vaddr

- length

length -

virtual address file
space
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Memory Mapping Update Semantics

¢ what should happen if the virtual memory to which a file hasbeepped is
updated?

e some options:

prohibit updates (read-only mapping)

eager propagation of the update to the file (too slow!)

lazy propagation of the update to the file
* user may be able to request propagation (e.g., Rospnc ()
* propagation may be guaranteedriynmap()

— allow updates, but do not propagate them to the file
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Memory Mapping Concurrency Semantics

¢ what should happen if a memory mapped file is updated?
— by a process that has mmapped the same file

— by a process that is updating the file usingra t e() system call

e options are similar to those on the previous slide. Typycall

— propagate lazily: processes that have mapped theéilgeventually see
the changes

— propagate eagerly: other processes will see the changes
x typically implemented by invalidating other process’s @aaple entries
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File Names

e application-visible objects (e.qg., files, directories} given names
¢ the file system is responsible for associating names withobdj
e the namespace is typically structured, often as a tree or@ DA

e namespace structure provides a way for users and applisatarganize and
manage information

e in a structured namespace, objects may be identifiguhltynameswhich
describe a path from a root object to the object being idextji.g.:

/ homre/ knsal enif cour ses/ ¢cs350/ notes/fil esys. ps
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Hierarchical Namespace Example

Key

@ = directory
L] =file
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Hard Links

e ahard linkis an association between a name and an underlying file (or
directory)

e typically, when a file is created, a single link is createdhm that file as well
(else the file would be difficult to use!)

— POSIX examplecr eat ( pat hnane, node) creates both a new empty
file object and a link to that object (usi@t hnane)

e some file systems allow additional hard links to be made tstiexg files. This
allows more than one name from the file system’s namespaedeiothe
same underlying object

— POSIX examplel i nk( ol dpat h, newpat h) creates a new hard link,
usingnewpat h, to the underlying object identified m} dpat h

File systems ensumeferential integrityfor hard links. A hard link
refers to the object it was created for until the link is egiply
destroyed. (What are the implications of this?)
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Hard Link lllustration

Hard links are a way to creat@on-hierarchical structuren the

namespace. Hard link creation may be restricted to reshet
kinds of structure that applications can create. Exampbehard

links to directories.
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Unlink Example

link(/y/k/g, /z/m)
unlink(/y/k/g)

Removing thdastlink to a file causes the file itself to be deleted.
Deleting a file that has a link would destroy the referentiégrity
of the link.
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Symbolic Links

e aSymbolic link or soft link is an association between two names in the file
namespace. Think of it is a way of defining a synonym for a file@a

— sym i nk( ol dpat h, newpat h) creates a symbolic link from
newpat h to ol dpat h, i.e.,newpat h becomes a synonym for
ol dpat h.

e symbolic links relate filenames to filenames, while harddirdate filenames
to underlying file objects!

¢ referential integrity is1ot preserved for symbolic links, e.g., the system call
above can succeed even if there is no object namhetpat h
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Soft Link Example

(ydig )

symlink(/y/k/g, /z/m)

[yl kl g still has only one hard link after theym i nk call.
A new symlink object records the association betwéerd m
and/y/ k/ g. open(/z/m will now have the same effect as
open(/y/k/Q).
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Soft Link Example with Unlink

"dangling” soft link

symlink(/y/k/g, /z/m)
unlink(/y/k/g)

A file is deleted by thisunlink call. An attempt to
open(/z/ m after theunl i nk will result in an error. If anew
file called/ y/ k/ g is created, a subsequempen(/ z/ nm) will
open the new file.
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Linux Link Example (1 of 2)

%cat > filel

This is filel.

%Ils -1li

685844 -rw------ 1 knsal em knsal em 15 2008-08-20 fil el
%In filel |inkl

%In -s filel syml

%Ils -1li
685844 -rw------ 2 kmsal em knsal em 15 2008-08-20 fil el
685844 -rw------ 2 knsal em knsal em 15 2008-08-20 |i nk1l

685845 | rwxrwxrwx 1 knsal em knmsal em 5 2008-08-20 synl -> filel
%cat filel

This is filel.

% cat |inkl

This is filel.

% cat synil

This is filel.

A file, a hard link, a soft link.
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Linux Link Example (2 of 2)

%/binfrmfilel

%ls -1li

685844 -rw------ 1 kmsal em knsal em 15 2008- 08-20 |inkl

685845 | rwxrwxrwx 1 knsal em kmsal em 5 2008-08-20 synil -> filel
% cat |inkl

This is filel.

% cat syml

cat: synil: No such file or directory

% cat > filel

This is a brand new filel.

%Ils -1li
685846 -rw------ 1 knsal em knsal em 27 2008-08-20 filel
685844 -rw------ 1 knsal em knsal em 15 2008-08-20 |i nkl

685845 | rwxrwxrwx 1 knsal em knsal em 5 2008-08-20 symlL -> filel
% cat |inkl

This is filel.

% cat synil

This is a brand new fil el.

Different behaviour for hard links and soft links.
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Multiple File Systems

e itis not uncommon for a system to have multiple file systems
e some kind of global file namespace is required

e two examples:
DOS/Windows: use two-part file names: file system name,pathname
— example: C:\ knsal eml cs350\ schedul e. t xt
Unix: merge file graphs into a single graph
— Unix mount system call does this
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Unix nount Example

"root" file system file system X
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Links and Multiple File Systems

¢ ahard link associates a name in the file system namespaca filghin that
file system

e typically, hard links cannot cross file system boundaries

e for example, even after the mount operation illustratedhenprevious slide,
i nk(/x/alxlg,/zld) would resultin an error, because the new link,
which is in the root file system refers to an object in file sysbe

e soft links do not have this limitation

e for example, after the mount operation illustrated on thevjmus slide:
—symink(/x/alx/g,!zld) would succeed
— open(/ z/ d) would succeed, with the effect of openihg/ a/ x/ g.

e even ifthesyml i nk operation were to occureforethenount command, it
would succeed
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File System Implementation

space management

file indexing (how to locate file data and meta-data)

directories

links

buffering, in-memory data structures

persistence
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Space Allocation and Layout

e space may be allocated in fixed-size chunks, or in chunksrgin@gsize
e fixed-size chunks: simple space management, but interaginfentation

e variable-size chunks: external fragmentation

IEEEEENENNEEEEEEE

fixed—size allocation

L | [

variable—size allocation

e layoutmatters! Try to lay a file out sequentially, or in large sedismextents
that can be read and written efficiently.
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File Indexing

e in general, a file will require more than one chunk of allodagpace
e this is especially true because files can grow

¢ how to find all of a file’s data?

chaining:
— each chunk includes a pointer to the next chunk
— OK for sequential access, poor for random access

external chaining: DOS file allocation table (FAT), for example
— like chaining, but the chain is kept in an external structure

per-file index: Unix i-node, for example
— for each file, maintain a table of pointers to the file’s blook&xtents
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Chaining
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External Chaining (File Access Table)

y v T~ external chain
[T =TT T FT = T T WH (e access table)

/
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Per-File Indexing
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Internal File Identifiers

e typically, a file system will assign a unique internal id&stito each file,
directory or other object

e given an identifer, the file system cdirectly locate a record containing key
information about the file, such as:

— the per-file index to the file data (if per-file indexing is usemt the
location of the file's first data block (if chaining is used)

— file meta-data (or a reference to the meta-data), such as
file owner

file access permissions

« file acesss timestamps

file type

*

*

*

e for example, a file identifier might be a number which indexesia-disk
array of file records
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Example: Unix i-nodes

e ani-node is a record describing a file

e each i-node is uniquely identified by an i-number, which duetees its
physical location on the disk

e an i-node is dixed sizeecord containing:

file attribute values
— file type
— file owner and group
access controls
creation, reference and update timestamps
— file size

direct block pointers: approximately 10 of these
single indirect block pointer
double indirect block pointer

triple indirect block pointer
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i-node Diagram

i-node (not to scale!) data blocks

attribute values

direct
direct

single indirect

triple indirect

?ﬂ

indirect blocks

CS350 Operating Systems Spring 2009

File Systems 34

Directories

e A directory consists of a set of entries, where each entryéxard that
includes:

— afile name (component of a path name)
— the internal file identifier (e.g., i-number) of the file

e A directory can be implemented as a special type of file. Thectbry entries
are the contents of the file.

e The file system should not allow directory files to be diregthytten by
application programs. Instead, the directory is updatethbyile system as
files are created and destroyed
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Implementing Hard Links

e hard links are simply directory entries

e for example, consider:
link(/ylklg,/z/lm

e to implement this:
1. find out the internal file identifier fary/ k/ g

2. create a new entry in directofy

— file name in new entry im
— file identifier (i-number) in the new entry is the one disc@en step 1
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Implementing Soft Links

e soft links can be implemented as a special type of file

e for example, consider:
symink(/yl/klg,/zlm
e to implement this:
— create a newgymlinkfile

— add a new entry in directoryz

x file name in new entry im
« I-number in the new entry is the i-number of the new symling fil

— store the pathname string “/y/k/g” as the contents of the syawlink file

e change the behaviour of tlepen system call so that when the symlink file is
encountered duringpen(/ z/ m) , the file/ y/ k/ g will be opened instead.
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Main Memory Data Structures

Primary Memory (volatile)

per process system open file table block buffer cache
open file tables // (cached copies of blocks)
0 ——
H L
2
3 /Mn-
0 // o o -
1 — f—
! A . —
3 cached i-nodes -
data blocks, index blocks, i-nodes, etc.
Secondary Memory (persistent)
CS350 Operating Systems Spring 2009
File Systems 38

Problems Caused by Failures

e asingle logical file system operation may require sevesM tO operations

e example: deleting a file
— remove entry from directory
— remove file index (i-node) from i-node table
— mark file’s data blocks free in free space index

e what if, because a failure, some but not all of these changefiected on
the disk?
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Fault Tolerance

e special-purpose consistency checkers (e.g., sixk in Berkeley FFS,
Linux ext2)

— runs after a crash, before normal operations resume
— find and attempt to repair inconsistent file system data sires, e.g.:

« file with no directory entry
x free space that is not marked as free

e journaling (e.g., Veritas, NTFS, Linux ext3)
— record file system meta-data changes in a journal (log),astguences
of changes can be written to disk in a single operation
— afterchanges have been journaled, update the disk data strsicture
(write-ahead logginy
— after a failure, redo journaled updates in case they werdomé before
the failure
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