File Systems 1

Files and File Systems

o files: persistent, named data objects

data consists of a sequence of numbered bytes

alternatively, a file may have some internal structure, e.gle may
consist of sequence of numbered records

file may change size over time

file has associated meta-data (attributes), in additiohddite name

* examples: owner, access controls, file type, creation acekac
timestamps

o file system: a collection of files which share a common nameespa

— allows files to be created, destroyed, renamed,

CS350 Operating Systems Spring 2009

File Systems 2

File Interface

open, close

— open returns a file identifier (or handle or descriptor), Wwhicused in
subsequent operations to identify the file. (Why is this (®ne

read, write

— must specify which file to read, which part of the file to reaaj ahere to
put the data that has been read (similar for write).

— often, file position is implicit (why?)

e seek

get/set file attributes, e.g., Unbxst at, chnod

CS350 Operating Systems Spring 2009

File Systems 3

File Read

fileoffset (implicit)
vaddr

ﬁ length

length

virtual address
space

file

read(filel D, vaddr, |ength)

CS350 Operating Systems Spring 2009

File Systems 4

File Position

may be associated with the file, with a process, or with a figedptor (Unix
style)

read and write operations
— start from the current file position

— update the current file position

this makes sequential file I/O easy for an application to estju

for non-sequential (random) file I/O, use:

— seek, to adjust file position before reading or writing

— a positioned read or write operation, e.g., Upixead, pwite:
pread(fileld,vaddr,|ength,filePosition)

CS350 Operating Systems Spring 2009

File Systems 5

Sequential File Reading Example (Unix)

char buf[512];
int i;
int f = open("nyfile", O RDONLY);
for(i=0; i<100; i++) {
read(f, (void =)buf,512);

}
cl ose(f);
Read the first 00 x 512 bytes of a file512 bytes at a time.
CS350 Operating Systems Spring 2009
File Systems 6

File Reading Example Using Seek (Unix)

char buf[512];
int i;
int f = open("nyfile", O RDONLY);
| seek(f,99x512, SEEK SET);
for(i=0; i<100; i++) {

read(f, (void *)buf, 512);

| seek(f,-1024, SEEK _CUR);
}

cl ose(f);

Read the firstl00 « 512 bytes of a file,512 bytes at a time, in
reverse order.

CS350 Operating Systems Spring 2009

File Systems 7

File Reading Example Using Positioned Read

char buf[512];
int i;
int f = open("nyfile", O RDONLY);
for(i=0; i<100; i+=2) {
pread(f, (void *)buf,512,i*512);

cl ose(f);

Read every secondl2 byte chunk of a file, untib0 have been

read.
CS350 Operating Systems Spring 2009
File Systems 8

Memory-Mapped Files

e generic interface:

vaddr «— mmap(file descriptor,fileoffset,|ength)
munmap(vaddr, | engt h)

e nmmap call returns the virtual address to which the file is mapped

e nmunnmap call unmaps mapped files within the specified virtual addrasge

Memory-mapping is an alternative to the read/write file rifatee.

CS350 Operating Systems Spring 2009

File Systems 9

Memory Mapping lllustration

fileoffset
vaddr

- length

length -

virtual address file
space

CS350 Operating Systems Spring 2009

File Systems 10

Memory Mapping Update Semantics

¢ what should happen if the virtual memory to which a file hasbeepped is
updated?

e some options:

prohibit updates (read-only mapping)

eager propagation of the update to the file (too slow!)

lazy propagation of the update to the file
* user may be able to request propagation (e.g., Rospnc ()
* propagation may be guaranteedriynmap()

— allow updates, but do not propagate them to the file

CS350 Operating Systems Spring 2009

File Systems 11

Memory Mapping Concurrency Semantics

¢ what should happen if a memory mapped file is updated?
— by a process that has mmapped the same file

— by a process that is updating the file usingra t e() system call

e options are similar to those on the previous slide. Typycall

— propagate lazily: processes that have mapped theéilgeventually see
the changes

— propagate eagerly: other processes will see the changes
x typically implemented by invalidating other process’s @aaple entries

CS350 Operating Systems Spring 2009

File Systems 12

File Names

e application-visible objects (e.qg., files, directories} given names
¢ the file system is responsible for associating names withobdj
e the namespace is typically structured, often as a tree or@ DA

e namespace structure provides a way for users and applisatarganize and
manage information

e in a structured namespace, objects may be identifiguhltynameswhich
describe a path from a root object to the object being idextji.g.:

/ homre/ knsal enif cour ses/ ¢cs350/ notes/fil esys. ps

CS350 Operating Systems Spring 2009

File Systems 13

Hierarchical Namespace Example

Key

@ = directory
L] =file

CS350 Operating Systems Spring 2009

File Systems 14

Hard Links

e ahard linkis an association between a name and an underlying file (or
directory)

e typically, when a file is created, a single link is createdhm that file as well
(else the file would be difficult to use!)

— POSIX examplecr eat (pat hnane, node) creates both a new empty
file object and a link to that object (usi@t hnane)

e some file systems allow additional hard links to be made tstiexg files. This
allows more than one name from the file system’s namespaedeiothe
same underlying object

— POSIX examplel i nk(ol dpat h, newpat h) creates a new hard link,
usingnewpat h, to the underlying object identified m} dpat h

File systems ensumeferential integrityfor hard links. A hard link
refers to the object it was created for until the link is egiply
destroyed. (What are the implications of this?)

CS350 Operating Systems Spring 2009

File Systems 15

Hard Link lllustration

Hard links are a way to creat@on-hierarchical structuren the

namespace. Hard link creation may be restricted to reshet
kinds of structure that applications can create. Exampbehard

links to directories.

CS350 Operating Systems Spring 2009

File Systems 16

Unlink Example

link(/y/k/g, /z/m)
unlink(/y/k/g)

Removing thdastlink to a file causes the file itself to be deleted.
Deleting a file that has a link would destroy the referentiégrity
of the link.

CS350 Operating Systems Spring 2009

File Systems 17

Symbolic Links

e aSymbolic link or soft link is an association between two names in the file
namespace. Think of it is a way of defining a synonym for a file@a

— sym i nk(ol dpat h, newpat h) creates a symbolic link from
newpat h to ol dpat h, i.e.,newpat h becomes a synonym for
ol dpat h.

e symbolic links relate filenames to filenames, while harddirdate filenames
to underlying file objects!

¢ referential integrity is1ot preserved for symbolic links, e.g., the system call
above can succeed even if there is no object namhetpat h

CS350 Operating Systems Spring 2009

File Systems 18

Soft Link Example

(ydig)

symlink(/y/k/g, /z/m)

[yl kl g still has only one hard link after theym i nk call.
A new symlink object records the association betwéerd m
and/y/ k/ g. open(/z/m will now have the same effect as
open(/y/k/Q).

CS350 Operating Systems Spring 2009

File Systems 19

Soft Link Example with Unlink

"dangling” soft link

symlink(/y/k/g, /z/m)
unlink(/y/k/g)

A file is deleted by thisunlink call. An attempt to
open(/z/ m after theunl i nk will result in an error. If anew
file called/ y/ k/ g is created, a subsequempen(/ z/ nm) will
open the new file.

CS350 Operating Systems Spring 2009

File Systems 20

Linux Link Example (1 of 2)

%cat > filel

This is filel.

%Ils -1li

685844 -rw------ 1 knsal em knsal em 15 2008-08-20 fil el
%In filel |inkl

%In -s filel syml

%Ils -1li
685844 -rw------ 2 kmsal em knsal em 15 2008-08-20 fil el
685844 -rw------ 2 knsal em knsal em 15 2008-08-20 |i nk1l

685845 | rwxrwxrwx 1 knsal em knmsal em 5 2008-08-20 synl -> filel
%cat filel

This is filel.

% cat |inkl

This is filel.

% cat synil

This is filel.

A file, a hard link, a soft link.

CS350 Operating Systems Spring 2009

File Systems 21

Linux Link Example (2 of 2)

%/binfrmfilel

%ls -1li

685844 -rw------ 1 kmsal em knsal em 15 2008- 08-20 |inkl

685845 | rwxrwxrwx 1 knsal em kmsal em 5 2008-08-20 synil -> filel
% cat |inkl

This is filel.

% cat syml

cat: synil: No such file or directory

% cat > filel

This is a brand new filel.

%Ils -1li
685846 -rw------ 1 knsal em knsal em 27 2008-08-20 filel
685844 -rw------ 1 knsal em knsal em 15 2008-08-20 |i nkl

685845 | rwxrwxrwx 1 knsal em knsal em 5 2008-08-20 symlL -> filel
% cat |inkl

This is filel.

% cat synil

This is a brand new fil el.

Different behaviour for hard links and soft links.

CS350 Operating Systems Spring 2009

File Systems 22

Multiple File Systems

e itis not uncommon for a system to have multiple file systems
e some kind of global file namespace is required

e two examples:
DOS/Windows: use two-part file names: file system name,pathname
— example: C:\ knsal eml cs350\ schedul e. t xt
Unix: merge file graphs into a single graph
— Unix mount system call does this

CS350 Operating Systems Spring 2009

File Systems 23

Unix nount Example

"root" file system file system X

CS350 Operating Systems Spring 2009

File Systems 24

Links and Multiple File Systems

¢ ahard link associates a name in the file system namespaca filghin that
file system

e typically, hard links cannot cross file system boundaries

e for example, even after the mount operation illustratedhenprevious slide,
i nk(/x/alxlg,/zld) would resultin an error, because the new link,
which is in the root file system refers to an object in file sysbe

e soft links do not have this limitation

e for example, after the mount operation illustrated on thevjmus slide:
—symink(/x/alx/g,!zld) would succeed
— open(/ z/ d) would succeed, with the effect of openihg/ a/ x/ g.

e even ifthesyml i nk operation were to occureforethenount command, it
would succeed

CS350 Operating Systems Spring 2009

File Systems 25

File System Implementation

space management

file indexing (how to locate file data and meta-data)

directories

links

buffering, in-memory data structures

persistence

CS350 Operating Systems Spring 2009

File Systems 26

Space Allocation and Layout

e space may be allocated in fixed-size chunks, or in chunksrgin@gsize
e fixed-size chunks: simple space management, but interaginfentation

e variable-size chunks: external fragmentation

IEEEEENENNEEEEEEE

fixed—size allocation

L | [

variable—size allocation

e layoutmatters! Try to lay a file out sequentially, or in large sedismextents
that can be read and written efficiently.

CS350 Operating Systems Spring 2009

File Systems 27

File Indexing

e in general, a file will require more than one chunk of allodagpace
e this is especially true because files can grow

¢ how to find all of a file’s data?

chaining:
— each chunk includes a pointer to the next chunk
— OK for sequential access, poor for random access

external chaining: DOS file allocation table (FAT), for example
— like chaining, but the chain is kept in an external structure

per-file index: Unix i-node, for example
— for each file, maintain a table of pointers to the file’s blook&xtents

CS350 Operating Systems Spring 2009

File Systems 28

Chaining

CS350 Operating Systems Spring 2009

File Systems 29

External Chaining (File Access Table)

y v T~ external chain
[T =TT T FT = T T WH (e access table)

/

CS350 Operating Systems Spring 2009

File Systems 30

Per-File Indexing

CS350 Operating Systems Spring 2009

File Systems 31

Internal File Identifiers

e typically, a file system will assign a unique internal id&stito each file,
directory or other object

e given an identifer, the file system cdirectly locate a record containing key
information about the file, such as:

— the per-file index to the file data (if per-file indexing is usemt the
location of the file's first data block (if chaining is used)

— file meta-data (or a reference to the meta-data), such as
file owner

file access permissions

« file acesss timestamps

file type

*

*

*

e for example, a file identifier might be a number which indexesia-disk
array of file records

CS350 Operating Systems Spring 2009

File Systems 32

Example: Unix i-nodes

e ani-node is a record describing a file

e each i-node is uniquely identified by an i-number, which duetees its
physical location on the disk

e an i-node is dixed sizeecord containing:

file attribute values
— file type
— file owner and group
access controls
creation, reference and update timestamps
— file size

direct block pointers: approximately 10 of these
single indirect block pointer
double indirect block pointer

triple indirect block pointer

CS350 Operating Systems Spring 2009

File Systems 33

i-node Diagram

i-node (not to scale!) data blocks

attribute values

direct
direct

single indirect

triple indirect

?ﬂ

indirect blocks

CS350 Operating Systems Spring 2009

File Systems 34

Directories

e A directory consists of a set of entries, where each entryéxard that
includes:

— afile name (component of a path name)
— the internal file identifier (e.g., i-number) of the file

e A directory can be implemented as a special type of file. Thectbry entries
are the contents of the file.

e The file system should not allow directory files to be diregthytten by
application programs. Instead, the directory is updatethbyile system as
files are created and destroyed

CS350 Operating Systems Spring 2009

File Systems 35

Implementing Hard Links

e hard links are simply directory entries

e for example, consider:
link(/ylklg,/z/lm

e to implement this:
1. find out the internal file identifier fary/ k/ g

2. create a new entry in directofy

— file name in new entry im
— file identifier (i-number) in the new entry is the one disc@en step 1

CS350 Operating Systems Spring 2009

File Systems 36

Implementing Soft Links

e soft links can be implemented as a special type of file

e for example, consider:
symink(/yl/klg,/zlm
e to implement this:
— create a newgymlinkfile

— add a new entry in directoryz

x file name in new entry im
« I-number in the new entry is the i-number of the new symling fil

— store the pathname string “/y/k/g” as the contents of the syawlink file

e change the behaviour of tlepen system call so that when the symlink file is
encountered duringpen(/ z/ m) , the file/ y/ k/ g will be opened instead.

CS350 Operating Systems Spring 2009

File Systems 37

Main Memory Data Structures

Primary Memory (volatile)

per process system open file table block buffer cache
open file tables // (cached copies of blocks)
0 ——
H L
2
3 /Mn-
0 // o o -
1 — f—
! A . —
3 cached i-nodes -
data blocks, index blocks, i-nodes, etc.
Secondary Memory (persistent)
CS350 Operating Systems Spring 2009
File Systems 38

Problems Caused by Failures

e asingle logical file system operation may require sevesM tO operations

e example: deleting a file
— remove entry from directory
— remove file index (i-node) from i-node table
— mark file’s data blocks free in free space index

e what if, because a failure, some but not all of these changefiected on
the disk?

CS350 Operating Systems Spring 2009

File Systems 39

Fault Tolerance

e special-purpose consistency checkers (e.g., sixk in Berkeley FFS,
Linux ext2)

— runs after a crash, before normal operations resume
— find and attempt to repair inconsistent file system data sires, e.g.:

« file with no directory entry
x free space that is not marked as free

e journaling (e.g., Veritas, NTFS, Linux ext3)
— record file system meta-data changes in a journal (log),astguences
of changes can be written to disk in a single operation
— afterchanges have been journaled, update the disk data strsicture
(write-ahead logginy
— after a failure, redo journaled updates in case they werdomé before
the failure

CS350 Operating Systems Spring 2009

