110

Devices and Device Controllers

e network interface

e graphics adapter

e secondary storage (disks, tape) and storage controllers

e serial (e.g., mouse, keyboard)

e sound

e CO-processors

CS350 Operating Systems Spring 2009
110 2
Bus Architecture Example
SR SR
CPU Cache
I
SR
Bridge Memory
(_|\ N
PCI bus
SCsSi usB id hi
controller controller Bridge Graphics
ISA bus
CS350 Operating Systems Spring 2009

110 3

Simplified Bus Architecture

Key
CPU M K K K M: memory

K: device controller

disk controller other controllers

CS350 Operating Systems Spring 2009

I/0 4

Sys/161 LAMEbus Devices

e LAMEDbus controller

e timer/clock - current time, timer, beep

e disk drive - persistent storage

e serial console - character input/output

e text screen - character-oriented graphics

e network interface - packet input/output

e emulator file system - simulation-specific

e hardware trace control - simulation-specific

e random number generator

CS350 Operating Systems Spring 2009

110 5

Device Interactions

e device registers
— command, status, and data registers
— CPU accesses register access via:
x special /0 instructions
* memory mapping
e interrupts
— used by device for asynchronous notification (e.g., of regoempletion)
— handled by interrupt handlers in the operating system

CS350 Operating Systems Spring 2009

110 6

Example: LAMEDbus timer device registers

Offset | Size Type Description
0 4 status current time (seconds)
4 4 status current time (nanoseconds)
8 4 command restart-on-expiry (auto-restart countdown?)
12 4 | status and command interrupt (reading clears)
16 4 | status and command countdown time (microseconds)
20 4 command speaker (causes beeps)

Sys/161 uses memory-mapping. Each device’s registers are
mapped into th@hysical address spaad the MIPS processor.

CS350 Operating Systems Spring 2009

110

Example: LAMEbus disk controller

Offset | Size Type Description
0 4 status number of sectors
4 4 | status and command status
8 4 command sector number
12 4 status rotational speed (RPM
32768 | 512 data transfer buffer
CS350 Operating Systems
/0
MIPS/OS161 Physical Address Space
0x00000000 OXFEFFFFF
RAM
ROM: 0x1fc00000 - Ox1fdfffff
<\ devices: 0x1fe00000 — Ox1fffffff
4
e 0 00
A
64 KB device "slot"
0x1fe00000 Ox L fffffff
Each device is assigned to one of 32 64KB device “slots”. A de-
vice’s registers and data buffers are memory-mapped istast
signed slot.
CS350 Operating Systems

110 9

Device Control Example: Controlling the Timer

/* Registers (offsets within the device slot) =*/

#define LT_ REGSEC 0 /= time of day: seconds */

#define LT REGNSEC 4 /= time of day: nanoseconds */

#define LT REGRCE 8 /* Restart On countdown-tiner Expiry flag
#define LT REGIRQ 12 /* Interrupt status register =/

#define LT _REG COUNT 16 /+ Time for countdown tiner (usec) =/
#define LT _REG SPKR 20 /* Beep control =/

[+ Get the nunber of seconds fromthe | amebus timer */
[+ It->t_buspos is the slot nunber of the target device =*/
secs = bus_read_register(lt->lt_bus, It->It_buspos,

LT REG SEC);

[+ Get the timer to beep. Doesn’t matter what value is sent */
bus wite register(lt->lt_bus, It->lt_buspos,
LT_REG SPKR, 440);

CS350 Operating Systems Spring 2009

110 10

Device Control Example: Address Calculations

[+ LAMEbus nmapping size per slot =*/

#define LB_SLOT_SI ZE 65536

#define M PS KSEGL 0xa0000000

#define LB_BASEADDR (M PS_KSEGL + 0x1f e00000)

/= Conmpute the virtual address of the specified offset =*/

/* into the specified device slot */

void =

| anebus_nmap_area(struct | anebus_softc *bus, int slot,
uint32 t offset)

u int32_t address;
(voi d) bus; /'l not needed

assert (sl ot>=0 && sl ot<LB _NSLOTS);
address = LB BASEADDR + slot+*LB SLOT_SI ZE + offset;
return (void *)address;

CS350 Operating Systems Spring 2009

110 11

Device Control Example: Commanding the Device

[+ FROM kern/arch/ m ps/ m ps/|anebus_m ps.c */

/* Read 32-bit register froma LAMEbus device. =*/

u.int32t

| amebus_read_regi ster(struct |anebus_softc =*bus,
int slot, u_int32_t offset)

u_int32_t *ptr = | amebus_map_area(bus, slot, offset);
return =ptr;

/+ Wite a 32-bit register of a LAVEbus device. =*/

voi d

| amebus_write register(struct |anebus_softc =*bus,
int slot, u_int32_t offset, u_int32_t val)

{
u_int32_t *ptr = | anmebus_map_area(bus, slot, offset);
*ptr = val;
}
CS350 Operating Systems Spring 2009
/0 12

Device Data Transfer

e Sometimes, a device operation will involve a large chunkatd much
larger than can be moved with a single instruction. Examaading a block
of data from a disk.

e Devices may have data buffers for such data - but how to getatebetween
the device and memory?

¢ If the data buffer is memory-mapped, the kernel can move #éte iteratively,
one word at a time. This is callggtogram-controlled 1/0

e Program controlled 1/O is simple, but it means that the CPhlsy executing
kernel codewhile the data is being transferred.

e The alternative is called Direct Memory Access (DMA). Dgria DMA data
transfer, the CPU isot busyand is free to do something else, e.g., run an
application.

Sys/161 LAMEDbus devices do program-controlled 1/O.

CS350 Operating Systems Spring 2009

110 13

Direct Memory Access (DMA)

e DMA is used for block data transfers between devices (e djskacontroller)
and memory

e Under DMA, the CPU initiates the data transfer and is notifiben the the
transfer is finished. However, the device (not the CPU) aisithe transfer
itself.

vl ¥ o2

K
CPU M amm_Av\ K K

1. CPU issues DMA request to controller
2. controller directs data transfer

3. controller interrupts CPU

CS350 Operating Systems Spring 2009

I} 14

Applications and Devices

e interaction with devices is normally accomplished by dewdcvers in the OS,
so that the OS can control how the devices are used

¢ applications see a simplified view of devices through a sysall interface
(e.g., block vs. character devices in Unix)
— the OS may provide a system call interface that permits lowile
interaction between application programs and a device
e operating system ofteouffersdata that is moving between devices and
application programs’ address spaces
— benefits: solve timing, size mismatch problems

— drawback: performance

CS350 Operating Systems Spring 2009

110 15

Logical View of a Disk Drive

disk is an array of numbered blocks (or sectors)

each block is the same size (e.g., 512 bytes)

blocks are the unit of transfer between the disk and memory

— typically, one or more contiguous blocks can be transfeimedsingle
operation

storage ison-volatile i.e., data persists even when the device is without
power

CS350 Operating Systems Spring 2009

110 16

A Disk Platter’s Surface

CS350 Operating Systems Spring 2009

110 17

Physical Structure of a Disk Drive

Shaft

Track

Sector ———%<
?\OV__:QQ
C
-
]

O’

CS350 Operating Systems Spring 2009

110 18

Simplified Cost Model for Disk Block Transfer

e moving data to/from a disk involves:
seek time: move the read/write heads to the appropriate cylinder
rotational latency: wait until the desired sectors spin to the read/write heads
transfer time: wait while the desired sectors spin past the read/write iead
e request service time is the sum of seek time, rotationah¢gteand transfer
time
tservice = tseek + trot + ttransfer

¢ note that there are other overheads but they are typicalyl sefative to these
three

CS350 Operating Systems Spring 2009

110 19

Rotational Latency and Transfer Time

rotational latency depends on the rotational speed of tle di

if the disk spins atv rotations per second:

1
O m w%ou m -
w
e expected rotational latency:
_ 1
Lrot = &
¢ transfer time depends on the rotational speed and on therdrabdata

transferred

if k sectors are to be transferred and therelasectors per track:

_k

N?,Q:m%mﬁ - ﬂ

CS350 Operating Systems Spring 2009

110 20

Seek Time

e seek time depends on the speed of the arm on which the resdheads are
mounted.
e asimple linear seek time model:

— tmazscer 1S the time required to move the read/write heads from the
innermost cylinder to the outermost cylinder

— C'is the total number of cylinders

e if k is the requiredseek distancé: > 0):

k
tseek A\Av = mwgaammmw

CS350 Operating Systems Spring 2009

110 21

Performance Implications of Disk Characteristics

¢ larger transfers to/from a disk device anere efficienthan smaller ones.
That is, the cost (time) per byte is smaller for larger trarsf(Why?)

e sequential I/O is faster than non-sequential 1/0
— sequential I/0O operations eliminate the need for (mosfisee

— disks use other techniques, likack buffering to reduce the cost of
sequential I/O even more

CS350 Operating Systems Spring 2009

110 22

Disk Head Scheduling

goal: reduce seek times by controlling the order in whicluests are serviced

disk head scheduling may be performed by the controllerhbyoperating
system, or both

for disk head scheduling to be effective, there must be aeoéautstanding
disk requests (otherwise there is nothing to reorder)

an on-line approach is required: the disk request queud istatic

CS350 Operating Systems Spring 2009

110 23

FCFS Disk Head Scheduling

e handle requests in the order in which they arrive

¢ fair and simple, but no optimization of seek times

arrival order: 104183 37 14 65 70

CS350 Operating Systems Spring 2009

110 24

Shortest Seek Time First (SSTF)

e choose closest request (a greedy approach)

e seek times are reduced, but requests may starve

arrival order: 104 183 37 14 65 70

CS350 Operating Systems Spring 2009

110 25

SCAN and LOOK

e LOOK is the commonly-implemented variant of SCAN. Also knoas the
“elevator” algorithm.

e Under LOOK, the disk head moves in one direction until thessre more
requests in front of it, then reverses direction.

e seek time reduction without starvation

e SCAN is like LOOK, except the read/write heads always movthalway to
the edge of the disk in each direction.

CS350 Operating Systems Spring 2009

110 26

SCAN Example

53 6570

arrival order: 104 183 14 65 70

CS350 Operating Systems Spring 2009

110 27

Circular SCAN (C-SCAN) and Circular LOOK (C-LOOK)

e C-LOOK and C-SCAN are variants of LOOK and SCAN

e Under C-LOOK, the disk head moves in one direction until ¢heme no more
requests in front of it, then it jumps back and begins anathan in the same
direction as the first.

e C-LOOK avoids bias against “edge” cylinders

CS350 Operating Systems Spring 2009

110 28

C-LOOK Example

53 6570

arrival order: 104 183 14 65 70

CS350 Operating Systems Spring 2009

