/O 1

Devices and Device Controllers

e network interface

e graphics adapter

e secondary storage (disks, tape) and storage controllers
e serial (e.g., mouse, keyboard)

e sound

® CO-pProcessors

CS350 Operating Systems Spring 2009

/O 2

Bus Architecture Example

CPU Cache

Bridge Memory

Rl

PCI bus
scCs| USB | |
controller controller Bridge Graphics
ISA bus

keyboarg (mouse) Modem Sound

i

CS350 Operating Systems Spring 2009

/O 3

Simplified Bus Architecture

Key
CPU M K K K M: memory
K: device controller

disk controller other controllers

CS350 Operating Systems Spring 2009

I/O 4

Sys/161 LAMEDbus Devices

e LAMEDbus controller

e timer/clock - current time, timer, beep

e disk drive - persistent storage

e serial console - character input/output

e text screen - character-oriented graphics

e network interface - packet input/output

e emulator file system - simulation-specific

e hardware trace control - simulation-specific

e random number generator

CS350 Operating Systems Spring 2009

/O 5

Device Interactions

e device registers
— command, status, and data registers

— CPU accesses register access via:
x special I/O instructions

x Mmemory mapping
e Interrupts
— used by device for asynchronous notification (e.g., of rego@mpletion)

— handled by interrupt handlers in the operating system

CS350 Operating Systems Spring 2009

/O

Example: LAMEDbus timer device registers

Offset | Size Type Description
0 4 status current time (seconds)
4 4 status current time (nanoseconds)
8 4 command restart-on-expiry (auto-restart countdown”
12 4 | status and command interrupt (reading clears)
16 4 | status and commangd countdown time (microseconds)
20 4 command speaker (causes beeps)

Sys/161 uses memory-mapping. Each device’s registers are
mapped into thehysical address spacd the MIPS processor.

CS350

Operating Systems Spring 2009

?)

/O

Example: LAMEDbus disk controller

N

Offset | Size Type Description

0 4 status number of sectors

4 4 | status and commangd status

8 4 command sector number

12 4 status rotational speed (RPM
32768 | 512 data transfer buffer

CS350

Operating Systems

Spring 2009

/O 8

MIPS/OS161 Physical Address Space

0x00000000 OXFFFFFFFF
RAM
ROM: 0x1fc00000 — Ox1fdfffff
V/ devices: 0x1fe00000 — Ox1fffffff
Y \/

64 KB device "slot"
0Ox1fe00000 Ox A fffffff

Each device is assigned to one of 32 64KB device “slots”. A de-
vice’s registers and data buffers are memory-mapped iatast
signed slot.

CS350 Operating Systems Spring 2009

/O

Device Control Example: Controlling the Timer

/* Registers (offsets wthin the device slot) =*/

#def |
#def |
#def |
#def |
#def |
#def |

ne
ne
ne
ne
ne
ne

LT REGSEC 0 /+»
LT REG NSEC 4 /=
LT REGROE 8 /=
LT REGIRQ 12 /=
LT REG COUNT 16 / =
LT REG SPKR 20 /=

time of day:
time of day:

seconds =/
nanoseconds =*/

Restart On countdown-ti nmer
| nterrupt status register =*/
Time for countdown tiner (usec) =*/

Beep control

* |

[+ Get the nunber of seconds fromthe | anebus tiner =*/
[+ It->lt _buspos is the slot nunber of the target device =*/

secs = bus read reqgister(lt->lt_bus,

LT REG SEC):

| t->lt_buspos,

Expiry flag

[+ Get the tinmer to beep. Doesn’t matter what value is sent =*/

bus wite register(lt->lt_bus,

LT REG SPKR, 440);

| t->lt _buspos,

CS350

Operating Systems

Spring 2009

/O 10

Device Control Example: Address Calculations

[~ LAMEbus mappi ng size per slot x/

#define LB SLOT_SI ZE 65536

#define M PS KSEGL 0xa0000000

#define LB BASEADDR (M PS KSEGL + 0x1fe00000)

[+ Conpute the virtual address of the specified offset x/

[+ 1into the specified device slot =/

voi d =

| anebus_map_area(struct | anebus _softc *bus, i1nt sl|ot,
uint32 t offset)

{
u int32 t address;
(voi d) bus; /'l not needed
assert(slot>=0 && sl ot <LB NSLOTS);
address = LB BASEADDR + slot*LB SLOT _SI ZE + of fset;
return (void *)address;
}

CS350 Operating Systems Spring 2009

/O 11

Device Control Example: Commanding the Device

[+~ FROM kern/arch/ m ps/m ps/|anebus_m ps.c =*/

/+* Read 32-bit register froma LAMEbus device. =*/

u int32 t

| anebus _read register(struct |anebus _softc =*bus,
Int slot, uint32 t offset)

{
uint32 t *ptr = | anebus_nmap_area(bus, slot, offset);
return *ptr;

}

/[~ Wite a 32-bit register of a LAMEbus device. =/

voi d

| anebus wite register(struct |anmebus softc xbus,
int slot, uint32 t offset, u iInt32 t val)

{
uint32 t *ptr = | anebus_nmap_area(bus, slot, offset);
*ptr = val;

CS350 Operating Systems Spring 2009

/O

12

Device Data Transfer

Sometimes, a device operation will involve a large chunkaifd much
larger than can be moved with a single instruction. Exampading a block
of data from a disk.

Devices may have data buffers for such data - but how to getdtebetween
the device and memory?

If the data buffer is memory-mapped, the kernel can move #te iteratively,
one word at a time. This is callggtogram-controlled 1/O

Program controlled 1/O is simple, but it means that the CPhlsy executing
kernel codewhile the data is being transferred.

The alternative is called Direct Memory Access (DMA). Dygrim DMA data
transfer, the CPU imot busyand is free to do something else, e.g., run an
application.

Sys/161 LAMEDbus devices do program-controlled 1/O.

CS350 Operating Systems Spring 2009

/O 13

Direct Memory Access (DMA)

e DMA is used for block data transfers between devices (e dskacontroller)
and memory

e Under DMA, the CPU Iinitiates the data transfer and is notNuben the the
transfer is finished. However, the device (not the CPU) adsithe transfer
itself.

vil* ¥ 2 |

K
CPU M (disk) K K

1. CPU issues DMA request to controller

2. controller directs data transfer

3. controller interrupts CPU

CS350 Operating Systems Spring 2009

/O 14

Applications and Devices

e Interaction with devices is normally accomplished by dewdcvers in the OS,
so that the OS can control how the devices are used

e applications see a simplified view of devices through a systall interface
(e.g., block vs. character devices in Unix)
— the OS may provide a system call interface that permits lowile
Interaction between application programs and a device
e Operating system oftapuffersdata that is moving between devices and
application programs’ address spaces
— benefits: solve timing, size mismatch problems

— drawback: performance

CS350 Operating Systems Spring 2009

/O 15

Logical View of a Disk Drive

e disk is an array of numbered blocks (or sectors)
e each block is the same size (e.g., 512 bytes)

e blocks are the unit of transfer between the disk and memory
— typically, one or more contiguous blocks can be transfeimedsingle
operation

e storage iswon-volatile i.e., data persists even when the device is without
power

CS350 Operating Systems Spring 2009

I/O 16

A Disk Platter's Surface

Track

Sector

CS350 Operating Systems Spring 2009

/O 17

Physical Structure of a Disk Drive

Shatft

Track

CS350 Operating Systems Spring 2009

/O 18

Simplified Cost Model for Disk Block Transfer

e moving data to/from a disk involves:
seek time: move the read/write heads to the appropriate cylinder
rotational latency: wait until the desired sectors spin to the read/write heads
transfer time: wait while the desired sectors spin past the read/write head
e reqguest service time is the sum of seek time, rotationahtgteand transfer
time
Uservice = tseek T trot + tiransfer

e note that there are other overheads but they are typicabyl satative to these
three

CS350 Operating Systems Spring 2009

/O

19

Rotational Latency and Transfer Time

rotational latency depends on the rotational speed of ie di

If the disk spins at rotations per second:

1
0 S trot S —
w
expected rotational latency:
_ 1
trot = —
rot 200

transfer time depends on the rotational speed and on therdrabdata
transferred

If & sectors are to be transferred and therelasectors per track:

k

ttransfer — T

CS350 Operating Systems Spring 2009

/O 20

Seek Time

e seek time depends on the speed of the arm on which the retdhgads are
mounted.

e asimple linear seek time model:

— tmazseek 1S the time required to move the read/write heads from the
Innermost cylinder to the outermost cylinder

— ('Is the total number of cylinders

e If £is the requirecdeek distancg: > 0):

k
tseek(k) — Etmaazseek

CS350 Operating Systems Spring 2009

/O 21

Performance Implications of Disk Characteristics

e larger transfers to/from a disk device anere efficienthan smaller ones.
That is, the cost (time) per byte is smaller for larger trarsf(Why?)
e sequential I/O is faster than non-sequential 1/0O
— sequential I/O operations eliminate the need for (mosKsee

— disks use other techniques, likack buffering to reduce the cost of
sequential I/0O even more

CS350 Operating Systems Spring 2009

/O 22

Disk Head Scheduling

e goal: reduce seek times by controlling the order in whichuests are serviced

e disk head scheduling may be performed by the controllerhbyoperating
system, or both

e for disk head scheduling to be effective, there must be a@oéoutstanding
disk requests (otherwise there is nothing to reorder)

e an on-line approach is required: the disk request queud istaic

CS350 Operating Systems Spring 2009

/O 23

FCFS Disk Head Scheduling

e handle requests in the order in which they arrive

e fair and simple, but no optimization of seek times

/

6570

53

arrival order; 104 183 14 65 70

CS350 Operating Systems Spring 2009

/O 24

Shortest Seek Time First (SSTF)

e choose closest request (a greedy approach)

e seek times are reduced, but requests may starve

100 150
AN AN AN AN AN AN
N\ N\ N\ N\ N\

\ \ \ \ \

\ \ \ \
\ \ \ \ \
\ \ \ \ \
\ \ \ \ \
\ \ \ \ \
\ \ \ \
\ \ \ \
\ \ \ \

+ - . P ——P
| | | | |
| | |
| l‘ | D O
| | | | |

| | | |

| | | |
/ / / /
/ / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / /
/ / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / /
53 6570 104
arrival order; 104 183 14 65 70

CS350 Operating Systems Spring 2009

/O 25

SCAN and LOOK

e LOOK is the commonly-implemented variant of SCAN. Also knoas the
“elevator” algorithm.

e Under LOOK, the disk head moves in one direction until theesr more
requests in front of it, then reverses direction.

e sSeek time reduction without starvation

e SCAN is like LOOK, except the read/write heads always motl#alway to
the edge of the disk in each direction.

CS350 Operating Systems Spring 2009

/O 26

SCAN Example

/

6570

53

arrival order: 104 183 14 65 70

CS350 Operating Systems Spring 2009

/O 27

Circular SCAN (C-SCAN) and Circular LOOK (C-LOOK)

e C-LOOK and C-SCAN are variants of LOOK and SCAN

e Under C-LOOK, the disk head moves in one direction until éeme no more
requests in front of it, then it jJumps back and begins anatban in the same
direction as the first.

e C-LOOK avoids bias against “edge” cylinders

CS350 Operating Systems Spring 2009

/O 28

C-LOOK Example

/

6570

53

arrival order: 104 183 14 65 70

CS350 Operating Systems Spring 2009

