
OS/161 C Primer 1

Modular Code Structure

• module implementation, e.g, thread.c

– contains:

∗ function implementations

∗ global variable declarations

∗ #includes of headers needed by implementation

∗ definitions needed (only) by implementation

∗ static vs. regular global variables and functions

– static vs. regular functions and global variables

• module interface, e.g., thread.h

– #included by code that needs to use threads

– contains

∗ prototypes of (public) thread functions

∗ declarations of data structures and constants used by the interface

CS350 Operating Systems Spring 2009

OS/161 C Primer 2

Other Code Structuing Issues

• some header files are not tied to specific modules

– example:include/types.h

• order of inclusion of header files is signficant

#include <types.h>

#include <lib.h>

#include <kern/errno.h>

#include <array.h>

#include <machine/spl.h>

#include <machine/pcb.h>

#include <thread.h>

...

OS/161 convention is thattypes.h should always be included first

CS350 Operating Systems Spring 2009

OS/161 C Primer 3

OS/161 Directory Structure (1 of 4)

os161−1.11

testbin

conf include

kern

compile

A0 A1 A2

thread vm

bin testbin

root

cs350−os161

binkern

CS350 Operating Systems Spring 2009

OS/161 C Primer 4

OS/161 Directory Structure (2 of 4)

simulated machine
file system of the

kernel and application source code

OS/161
kernel

goes here

OS/161
application
programs

os161−1.11

testbin

conf include

kern

compile

A0 A1 A2

thread vm

bin testbin

root

cs350−os161

binkern

CS350 Operating Systems Spring 2009

OS/161 C Primer 5

OS/161 Directory Structure (3 of 4)

source code
OS/161 application

kernel
source
code

os161−1.11

testbin

conf include

kern

compile

A0 A1 A2

thread vm

bin testbin

root

cs350−os161

binkern

CS350 Operating Systems Spring 2009

OS/161 C Primer 6

OS/161 Directory Structure (4 of 4)

kernel configuration files

architecture−independent
include files

includes used by kernel
AND applications

build directories (one per assignment)

"make install"
copies kernel
to root directory

source code
OS/161 application

kernel
source
code

os161−1.11

testbin

conf include

kern

compile

A0 A1 A2

thread vm

bin testbin

root

cs350−os161

binkern

CS350 Operating Systems Spring 2009

OS/161 C Primer 7

Kernel’s Standard Library

• User-level C applications can use the C standard library

• The OS/161 kernel also has a library, similar to the user-level standard library,

e.g.,

– dynamic memory management (kmalloc, kfree)

– string functions

– input/output (kprintf,kgets,putch

– data movement (copyin,copyout)

• kernel library is not identical to the user-level library, e.g.,

– kmalloc vs. malloc

– kstrdup vs. strdup

– kprintf vs. printf

Why??

CS350 Operating Systems Spring 2009

OS/161 C Primer 8

Pointers and Arrays

static char *bowls;

int

initialize_bowls(unsigned int bowlcount) {

unsigned int i;

bowls = kmalloc(bowlcount*sizeof(char));

if (bowls == NULL) {

panic("initialize_bowls: unable to allocate

space for %d bowls\n",bowlcount);

}

/* initialize bowls */

for(i=0;i<bowlcount;i++) {

bowls[i] = ’-’;

}

...

CS350 Operating Systems Spring 2009

OS/161 C Primer 9

Dynamic Memory Allocation

struct semaphore *
sem_create(const char *namearg, int initial_count) {

struct semaphore *sem;

sem = kmalloc(sizeof(struct semaphore));

if (sem == NULL) { return NULL; }

sem->name = kstrdup(namearg);

if (sem->name == NULL) {

kfree(sem);

return NULL; }

sem->count = initial_count;

return sem;

}

What does a semaphore look like?

CS350 Operating Systems Spring 2009

OS/161 C Primer 10

volatile Variables

struct semaphore {

char *name;

volatile int count;

};

void P(struct semaphore *sem)

{

....

while (sem->count==0) { thread_sleep(sem); }

assert(sem->count>0);

sem->count--;

....

}

volatile indicates that the value of a program variable may

change “spontaneously”

CS350 Operating Systems Spring 2009

OS/161 C Primer 11

const Variables

• from kern/lib/kheap.c:

#define NSIZES 8

static const size_t

sizes[NSIZES] = {16,32,64,128,256,512,1024,2048};

• from kern/include/lib.h:

int strcmp(const char *, const char *);

char *strcpy(char *, const char *);

const indicates that the value of a program variable should never

change. In the case of a pointer variable, const indicates that the

thing pointed to should never change.

CS350 Operating Systems Spring 2009

