Processes and the Kernel 1

What is a Process?

Answer 1. a process is an abstraction of a program in execution

Answer 2. a process consists of

e anaddress space, which represents the memory that holds the program’s
code and data

e athread of execution (possibly several threads)
e other resources associated with the running program. Fonpbe:
— open files

— sockets
— attributes, such as a name (process identifier)

A process with one thread issaquential process. A process with
more than one thread iscancurrent process.

CS350 Operating Systems Spring 2009



Processes and the Kernel 2

Multiprogramming

e multiprogramming means having multiple processes exjsiirthe same time
e Most modern, general purpose operating systems suppdrprogtamming
e all processes share the available hardware resourcegh&itharing

coordinated by the operating system:

— Each process uses some of the available memory to hold itesglslpace.
The OS decides which memory and how much memory each proe&ss ¢

— OS can coordinate shared access to devices (keyboards), disice
processes use these devices indirectly, by making syst#sn ca

— Processe8meshare the processor(s). Again, timesharing is controlled by
the operating system.

e OS ensures that processes are isolated from one anotleeprbudess
communication should be possible, but only at the explemjuest of the
processes involved.

CS350 Operating Systems Spring 2009



Processes and the Kernel 3

The OS Kernel

e The kernel is a program. It has code and data like any othgrano.

e Usually kernel code runs in a privileged execution mode Jevbiiher
programs do not

e For now, think of the kernel as a program that resides in its address space,
separate from the address spaces of processes that amegronrthe system.

Later, we will elaborate on the relationship between the&ks address space
and process address spaces.

CS350 Operating Systems Spring 2009



Processes and the Kernel 4

An Application and the Kernel

application kernel

( \( N\ [ ) 4 N\ ([ )

stack || data code memory

thread library

CPU regqisters

CS350 Operating Systems Spring 2009



Processes and the Kernel 5

Kernel Privilege, Kernel Protection

e What does it mean to run in privileged mode?

e Kernel uses privilege to
— control hardware

— protect and isolate itself from processes

e privileges vary from platform to platform, but may include:
— ability to execute special instructions (likel t)
— ability to manipulate processor state (like execution mode
— ability to access memory addresses that can’t be accedsevae
e kernel ensures that it isolated from processes. NO process can execute or

change kernel code, or read or write kernel data, excepudgwoontrolled
mechanisms like system calls.

CS350 Operating Systems Spring 2009



Processes and the Kernel

e System calls are an interface between processes and thet.kern

e A process uses system calls to request operating systermeserv

System Calls

e From point of view of the process, these services are use@hymlate the
abstractions that are part of its execution environmentekample, a process
might use a system call to

open a file
send a message over a pipe
create another process

Increase the size of its address space

CS350

Operating Systems

Spring 2009



Processes and the Kernel

How System Calls Work

e The hardware provides a mechanism that a running programssto cause

a system call. Often, it is a special instruction, e.g., tHe®kyscal |
Instruction.

e What happens on a system call:

— the processor is switched to system (privileged) executiode

— key parts of the current thread context, such as the progoamter, are
saved

— the program counter is set to a fixed (determined by the hasjwaemory
address, which is within the kernel’s address space

CS350 Operating Systems Spring 2009



Processes and the Kernel 8

System Call Execution and Return

e Once a system call occurs, the calling thread will be exagudisystem call
handler, which is part of the kernel, in system mode.

e The kernel’'s handler determines which service the callmogg@ss wanted, and
performs that service.
e When the kernel is finished, it returns from the system cdlis eans:

— restore the key parts of the thread context that were saved Wie system
call was made

— switch the processor back to unprivileged (user) executiode

e Now the thread is executing the calling process’ progranmagecking up
where it left off when it made the system call.

A system call causes a thread to stop executing applicabde c
and to start executing kernel code in privileged mode. Tlis¢esy
call return switches the thread back to executing appboatode
In unprivileged mode.

CS350 Operating Systems Spring 2009



Processes and the Kernel 9

System Call Diagram

Process Kernel
| time
| system call
A O
thread |
execution !
path !
system call return |
T L
|
|
|
|
|
Y
\J

CS350 Operating Systems Spring 2009



Processes and the Kernel 10

0S/161cl ose System Call Description

Library: standard C library (libc)
Synopsis:

#i ncl ude <uni std. h>

| nt

close(int fd);

Description: The file handld d is closed.. . .

Return Values: On succesg;l ose returns 0. On error, -1 is returned and
er r no is set according to the error encountered.

Errors:
EBADF: fdis not a valid file handle
EIO: A hard /O error occurred

CS350 Operating Systems Spring 2009



Processes and the Kernel

11

A Tiny OS/161 Application that Usescl ose: SyscallExample

[+ Program Syscall Exanmpl e */

#i ncl ude <uni std. h>
#i ncl ude <errno. h>

| nt
mai n()
{
| Nt X;
X = cl ose(999),;
1f (x <0) {
return errno;

}

return X,

CS350

Operating Systems

Spring 2009



Processes and the Kernel

12

00400100

400100:
400104:
400108:
40010c:
400110:
400114:
400118:
40011c:
400120:
400124:
400128:
40012c:
400130:
400134:

SyscallExample, Disassembled

<nmal n>:

27bdf f e8
af bf 0010
0c100077
240403e7
04400005
00401821
8f bf 0010
00601021
03e00008
27bd0018
3c031000
8c630000
08100046
00000000

addi u sp, sp,-24

sw ra, 16(sp)

jal 4001dc <cl ose>
i a0, 999

bltz v0, 400128 <mai n+0x28>
nove v1, v0

| w ra, 16(sp)

nove vO, vl

jr ra

addi u sp, sp, 24

| ui v1, 0x1000

lw vl, O(vl)

j 400118 <nmmi n+0x18>
nop

The above can be obtained by disassembling the compiled

Syscal | Exanpl e executable file usings350- obj dunmp -d

CS350

Operating Systems

Spring 2009



Processes and the Kernel 13

System Call Wrapper Functions from the Standard Library

004001d4 <write>:
4001d4: 08100060 | 400180 < syscall>
4001d8: 24020006 I|i vO, 6

004001dc <cl ose>:
4001dc: 08100060 | 400180 < syscall>
4001e0: 24020007 |i vO,7

004001e4 <reboot >:
4001e4: 08100060 | 400180 < syscall>
4001e8: 24020008 1I|i vO,8

The above is disassembled code from the standard C Ii-
brary (libc), which is linked withSyscal | Exanpl e. See

|1 b/11ibc/syscalls. S for more information about how the
standard C library is implemented.

CS350 Operating Systems Spring 2009



Processes and the Kernel 14

0S/161 MIPS System Call Conventions

e Whenthesyscal | instruction occurs:
— An integer system call code should be located in registenB2 (

— Any system call arguments should be located in registersaBY R5 (al),
R6 (a2), and R7 (a3), much like procedure call arguments.

e When the system call returns

— register R7 (a3) will contain a O if the system call succeedea 1 if the
system call failed

— register R2 (v0) will contain the system call return valuthé system call
succeeded, or an error number (errno) if the system cadidail

CS350 Operating Systems Spring 2009



Processes and the Kernel

15

#def |

0S/161 System Call Code Definitions

ne SYS read 5
#define SYS wite 6
#defi ne SYS cl ose 7
#def i ne SYS reboot 8
#defi ne SYS sync 9
#defi ne SYS sbrk 10
This comes fronker n/ i ncl ude/ ker n/ cal | no. h. The files
In ker n/ i ncl ude/ ker n define things (like system call codes)
that must be known by both the kernel and applications.
CS350 Operating Systems Spring 2009



Processes and the Kernel 16

The OS/161 System Call and Return Processing

00400180 < syscall >:
400180: 0000000c syscall
400184: 10e00005 beqgz a3, 40019c < syscal |l +Oxlc>
400188: 00000000 nop
40018c: 3c011000 |lui at,0x1000
400190: ac220000 sw vO, O(at)
400194: 2403ffff 1i vi,-1
400198: 24021 fff 1i vO,-1
40019c: 03e00008 jr ra
4001a0: 00000000 nop

The system call and return processing, from the standaror&ri.
Like the rest of the library, this is unprivileged, userdecode.

CS350 Operating Systems Spring 2009



Processes and the Kernel 17

0S/161 MIPS Exception Handler

excepti on:
nmove k1, sp /[ Save previous stack pointer in k1 */
nfcO kO, cO_status [+ Get status register =/
andi kO, kO, CST KUp /* Check the we-were-in-user-node bit =*/

beq kO, $0, 1f [« |f clear,fromkernel, already have stack -
nop [+ delay slot =/
[+ Com ng fromuser node - |oad kernel stack into sp */
| a kO, curkstack [+ get address of "curkstack" =/
| w sp, 0(kO) [+ get its value =*/
nop [+ delay slot for the | oad */
1:
nfcO kO, cO _cause [+ Now, |oad the exception cause. =*/
j common_exception [+ Skip to commbn code */
nop [+ delay slot =/

When thesyscal | instruction occurs, the MIPS transfers control to
addres90x80000080. This kernel exception handler lives there. See
kern/ arch/ m ps/ m ps/ exception. S

CS350 Operating Systems Spring 2009



Processes and the Kernel 18

0S/161 User and Kernel Thread Stacks

application kernel

( \( N\ [ )

stack || data code memory stack data code

thread library

CPU regqisters

Each OS/161 thread has two stacks, one that is used while the
thread is executing unprivileged application code, andtardhat
IS used while the thread is executing privileged kernel code

CS350 Operating Systems Spring 2009



Processes and the Kernel 19

0S/161 MIPS Exception Handler (cont’d)

Thecommon_except i on code does the following:

1. allocates @rap frame on the thread’s kernel stack and saves the user-level
application’s complete processor state (all registergxkO and k1) into the
trap frame.

2. calls them ps_t r ap function to continue processing the exception.

3. whenm ps_t r ap returns, restore the application processor state from the
trap from to the registers

4. issue MIP3 r andr f e (restore from exception) instructions to return control
to the application code. Thea instruction takes control back to location
specified by the application program counter whensthecal | occurred,
and ther f e (which happens in the delay slot of the) restores the processor
to unprivileged mode

CS350 Operating Systems Spring 2009



Processes and the Kernel 20

OS/161 Trap Frame

application kernel

( \( N\ [ ) N\ [ )

stack || data code memory stack data code

E e . - — |
- VAN J J \ k J C J
/ thread library

trap frame with saved
application state

CPU regqisters

While the kernel handles the system call, the applicati@P)
state is saved in a trap frame on the thread’s kernel stackthan
CPU reqisters are available to hold kernel execution state.

CS350 Operating Systems Spring 2009



Processes and the Kernel 21

m ps_t r ap: Handling System Calls, Exceptions, and Interrupts

e Onthe MIPS, the same exception handler is invoked to hardlems calls,
exceptions and interrupts

e The hardware sets a code to indicate the reason (systenaxaadiption, or
Interrupt) that the exception handler has been invoked

e OS/161 has a handler function corresponding to each of tieesens. The
m ps_t r ap function tests the reason code and calls the appropriattidm
the system call handleni{ ps_syscal | ) in the case of a system call.

e M ps_trap can be found irkern/ arch/ m ps/ m ps/trap.c.

Interrupts and exceptions will be presented shortly

CS350 Operating Systems Spring 2009



Processes and the Kernel 22

0S/161 MIPS System Call Handler

m ps_syscal | (struct trapfrane =tf) {
assert (curspl ==0);
callno = tf->tf vO; retval = 0;
swtch (callno) {
case SYS reboot:
err = sys reboot(tf->tf _al); /* in kern/main/main.c =*/
br eak;

[+ Add stuff here =/

def aul t:
Kprintf("Unknown syscall %\n", callno);
err = ENGSYS;

br eak;

}
m ps_syscall checks the system call code and In-
vokes a handler for the Iindicated system call. See

kern/arch/ m ps/ m ps/syscall.c

CS350 Operating Systems Spring 2009



Processes and the Kernel 23

0S/161 MIPS System Call Return Handling

1 f (err) {

tf->tf _v0 = err;

tf->tf_a3 = 1; [+ signal an error =/
} else {

[+ Success. */

tf->tf vO = retval;

tf->tf _a3 = 0; [+ signal no error =/

[/ Advance the PC, to avoid the syscall again. =/
tf->tf _epc += 4;

[+ Make sure the syscall code didn't forget to | ower spl +
assert (curspl ==0);

m ps_syscal | mustensure that the kernel adheres to the system
call return convention.

CS350 Operating Systems Spring 2009



Processes and the Kernel 24

Exceptions

e EXceptions are another way that control is transferred fqmocess to the
kernel.

e EXceptions are conditions that occur during the executf@amanstruction by
a process. For example, arithmetic overflows, illegal uttons, or page
faults (to be discussed later).

e exceptions are detected by the hardware

e When an exception is detected, the hardware transfersotomta specific
address

e normally, a kernel exception handler is located at that esklr

Exception handling is similar to, but not identical to, gstcall
handling. (What is different?)

CS350 Operating Systems Spring 2009



Processes and the Kernel 25

MIPS Exceptions

EX | RQ 0 [+ Interrupt =/

EX MOD 1 [+ TLB Modify (wite to read-only page) =/
EX TLBL 2 [+ TLB m ss on | oad */

EX TLBS 3 [+ TLB m ss on store =*/

EX_ ADEL 4 [+ Address error on |oad */

EX ADES 5 /[~ Address error on store =*/

EX | BE 6 [+ Bus error on instruction fetch x/

EX DBE 7 [+ Bus error on data |load *orx store =/

EX _SYS 8 [+ Syscal |l =*/

EX BP 9 [~ Breakpol nt =/

EX R 10 /+* Reserved (illegal) instruction x/
EX CPU 11 /| ~ Coprocessor unusable =*/
EX OVF 12 [+ Arithnmetic overflow */

In OS/161,m ps_t r ap uses these codes to decide whether it has
been invoked because of an interrupt, a system call, or agpexc
tion.

CS350 Operating Systems Spring 2009



Processes and the Kernel 26

Interrupts

e Interrupts are a third mechanism by which control may besfeamed to the
kernel

e Interrupts are similar to exceptions. However, they aresedly hardware
devices, not by the execution of a program. For example:

— a network interface may generate an interrupt when a netpacket
arrives

— a disk controller may generate an interrupt to indicate itiads finished
writing data to the disk

— atimer may generate an interrupt to indicate that time hasquh
¢ Interrupt handling is similar to exception handling - cutrexecution context

IS saved, and control is transferred to a kernel interruptiea at a fixed
address.

CS350 Operating Systems Spring 2009



Processes and the Kernel 27

Interrupts, Exceptions, and System Calls: Summary

e Iinterrupts, exceptions and system calls are three mecharing which control
IS transferred from an application program to the kernel

e Wwhen these events occur, the hardware switches the CPUriatieged mode
and transfers control to a predefined location, at which aetdsandler
should be located

e the handler saves the application thread context so th&etimel code can be
executed on the CPU, and restores the application threddxtgust before
control is returned to the application

CS350 Operating Systems Spring 2009



Processes and the Kernel 28

Implementation of Processes

e The kernel maintains information about all of the processdise system in a
data structure often called the process table.

e Information about individual processes is stored in a $tingcthat is
sometimes called process control block (PCB). In practice, however,
Information about a process may not all be located in a sidgla structure.

e Per-process information may include:

— process identifier and owner
— current process state and other scheduling information
— lists of resources allocated to the process, such as opsn file

— accounting information

In OS/161, some process information (e.g., an address space
pointer) is kept in the hr ead structure. This works only because
each OS/161 process has a single thread.

CS350 Operating Systems Spring 2009



Processes and the Kernel 29

Implementing Timesharing

e whenever a system call, exception, or interrupt occurstrobis transferred
from the running program to the kernel

e at these points, the kernel has the ability to cause a cosiaith from the
running process’ thread to another process’ thread

e notice that these context switches always occur while aga®i¢hread is
executing kernel code

By switching from one process’s thread to another process’s

thread, the kernel timeshares the processor among muftrple
cesses.

CS350 Operating Systems Spring 2009



Processes and the Kernel 30

Two Processes in OS/161

application #1 kernel application #2
stack || data code stack data “ code || stack stack|| data || code
- PRI R || SN
I |
// oooon I |
I |
S L J U /Z ‘\\____Jt_p S YAS J y

/
\ thread library

trap frame for app #1

saved kernel thread
context for thread #1

CPU registers

CS350 Operating Systems Spring 2009



Processes and the Kernel 31
Timesharing Example (Part 1)
Process A Kernel Process B
| B’s thread is
| system call ready, not running
| or exception N
| or interrupt el
| return
| - |- _____1 _
P l
- |
/ - 7 A'sthread is v
_ ready, not running
context switch
Kernel switches execution context to Process B.
CS350 Operating Systems Spring 2009



Processes and the Kernel 32

Timesharing Example (Part 2)

Process A Kernel Process B

system call
or exception
or interrupt

context switch

—— B’s thread is
ready, not running

Kernel switches execution context back to process A.

CS350 Operating Systems Spring 2009



Processes and the Kernel 33

Implementing Preemption

e the kernel uses interrupts from the system timer to meaberpdssage of
time and to determine whether the running process’s quahasm®expired.

e atimer interrupt (like any other interrupt) transfers cohfrom the running
program to the kernel.

e this gives the kernel the opportunity to preempt the runtimmgad and
dispatch a new one.

CS350 Operating Systems Spring 2009



Processes and the Kernel 34

Preemptive Multiprogramming Example

Process A Kernel Process B
: timer interrupt
|
I S
: interrupt return :
| -
i I - Key:
il il -
- ready thread
N T o
> S running threac
|
N e —
context - L ________ .
switches - :
- I
- [ T
- I T
- |
T Foo
, :
|
T - —
N —

CS350 Operating Systems Spring 2009



Processes and the Kernel 35

System Calls for Process Management

Linux 0S/161
Creation fork,execve fork,execv
Destruction _exit,kill _exit
Synchronization wait,waitpid,pause, . waitpid
Attribute Mgmt || getpid,getuid,nice,getrusage, getpid

CS350 Operating Systems Spring 2009



Processes and the Kernel 36

The Process Model

e Although the general operations supported by the procésdane are
straightforward, there are some less obvious aspects oégsdoehaviour that
must be defined by an operating system.

Process Initialization: When a new process is created, how is it initialized?
What is in the address space? What is the initial thread gtihi2oes it
have any other resources?

Multithreading: Are concurrent processes supported, or is each process
limited to a single thread?

Inter-Process Relationships: Are there relationships among processes, e.q,
parent/child? If so, what do these relationships mean?

CS350 Operating Systems Spring 2009



Processes and the Kernel 37

Process Creation Example (Part 1)

Process A Kernel

system call
(CreateProcess)

Parent process (Process A) requests creation of a new process

CS350 Operating Systems Spring 2009



Processes and the Kernel 38

Process Creation Example (Part 2)

Process A Kernel Process B

system call
(CreateProcess)

—_ —_- —_- —_- —_= = 4

b __ L B’s thread is
ready, not running

e

system call return

Kernel creates new process (Process B)

CS350 Operating Systems Spring 2009



