Processes and the Kernel 1

What is a Process?

Answer 1. a process is an abstraction of a program in execution

Answer 2. a process consists of

e anaddress space, which represents the memory that holds the program’s
code and data

e athread of execution (possibly several threads)
e other resources associated with the running program. Fonpbe:
— open files

— sockets
— attributes, such as a name (process identifier)

A process with one thread issaquential process. A process with
more than one thread iscancurrent process.
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Multiprogramming

e multiprogramming means having multiple processes exjsiirthe same time
e Most modern, general purpose operating systems suppdrprogtamming
e all processes share the available hardware resourcegh&itharing

coordinated by the operating system:

— Each process uses some of the available memory to hold itesglslpace.
The OS decides which memory and how much memory each proe&ss ¢

— OS can coordinate shared access to devices (keyboards), disice
processes use these devices indirectly, by making syst#sn ca

— Processe8meshare the processor(s). Again, timesharing is controlled by
the operating system.

e OS ensures that processes are isolated from one anotleeprbudess
communication should be possible, but only at the explemjuest of the
processes involved.
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The OS Kernel

e The kernel is a program. It has code and data like any othgrano.

e Usually kernel code runs in a privileged execution mode Jevbiiher
programs do not

e For now, think of the kernel as a program that resides in its address space,
separate from the address spaces of processes that amegronrthe system.

Later, we will elaborate on the relationship between the&ks address space
and process address spaces.
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An Application and the Kernel

application kernel

( \( N\ [ ) 4 N\ ([ )

stack || data code memory

thread library

CPU regqisters
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Kernel Privilege, Kernel Protection

e What does it mean to run in privileged mode?

e Kernel uses privilege to
— control hardware

— protect and isolate itself from processes

e privileges vary from platform to platform, but may include:
— ability to execute special instructions (likel t)
— ability to manipulate processor state (like execution mode
— ability to access memory addresses that can’t be accedsevae
e kernel ensures that it isolated from processes. NO process can execute or

change kernel code, or read or write kernel data, excepudgwoontrolled
mechanisms like system calls.
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e System calls are an interface between processes and thet.kern

e A process uses system calls to request operating systermeserv

System Calls

e From point of view of the process, these services are use@hymlate the
abstractions that are part of its execution environmentekample, a process
might use a system call to

open a file
send a message over a pipe
create another process

Increase the size of its address space
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How System Calls Work

e The hardware provides a mechanism that a running programssto cause

a system call. Often, it is a special instruction, e.g., tHe®kyscal |
Instruction.

e What happens on a system call:

— the processor is switched to system (privileged) executiode

— key parts of the current thread context, such as the progoamter, are
saved

— the program counter is set to a fixed (determined by the hasjwaemory
address, which is within the kernel’s address space
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System Call Execution and Return

e Once a system call occurs, the calling thread will be exagudisystem call
handler, which is part of the kernel, in system mode.

e The kernel’'s handler determines which service the callmogg@ss wanted, and
performs that service.
e When the kernel is finished, it returns from the system cdlis eans:

— restore the key parts of the thread context that were saved Wie system
call was made

— switch the processor back to unprivileged (user) executiode

e Now the thread is executing the calling process’ progranmagecking up
where it left off when it made the system call.

A system call causes a thread to stop executing applicabde c
and to start executing kernel code in privileged mode. Tlis¢esy
call return switches the thread back to executing appboatode
In unprivileged mode.
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System Call Diagram

Process Kernel
| time
| system call
A O
thread |
execution !
path !
system call return |
T L
|
|
|
|
|
Y
\J
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0S/161cl ose System Call Description

Library: standard C library (libc)
Synopsis:

#i ncl ude <uni std. h>

| nt

close(int fd);

Description: The file handld d is closed.. . .

Return Values: On succesg;l ose returns 0. On error, -1 is returned and
er r no is set according to the error encountered.

Errors:
EBADF: fdis not a valid file handle
EIO: A hard /O error occurred
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A Tiny OS/161 Application that Usescl ose: SyscallExample

[+ Program Syscall Exanmpl e */

#i ncl ude <uni std. h>
#i ncl ude <errno. h>

| nt
mai n()
{
| Nt X;
X = cl ose(999),;
1f (x <0) {
return errno;

}

return X,

CS350

Operating Systems

Spring 2009



Processes and the Kernel

12

00400100

400100:
400104:
400108:
40010c:
400110:
400114:
400118:
40011c:
400120:
400124:
400128:
40012c:
400130:
400134:

SyscallExample, Disassembled

<nmal n>:

27bdf f e8
af bf 0010
0c100077
240403e7
04400005
00401821
8f bf 0010
00601021
03e00008
27bd0018
3c031000
8c630000
08100046
00000000

addi u sp, sp,-24

sw ra, 16(sp)

jal 4001dc <cl ose>
i a0, 999

bltz v0, 400128 <mai n+0x28>
nove v1, v0

| w ra, 16(sp)

nove vO, vl

jr ra

addi u sp, sp, 24

| ui v1, 0x1000

lw vl, O(vl)

j 400118 <nmmi n+0x18>
nop

The above can be obtained by disassembling the compiled

Syscal | Exanpl e executable file usings350- obj dunmp -d
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System Call Wrapper Functions from the Standard Library

004001d4 <write>:
4001d4: 08100060 | 400180 < syscall>
4001d8: 24020006 I|i vO, 6

004001dc <cl ose>:
4001dc: 08100060 | 400180 < syscall>
4001e0: 24020007 |i vO,7

004001e4 <reboot >:
4001e4: 08100060 | 400180 < syscall>
4001e8: 24020008 1I|i vO,8

The above is disassembled code from the standard C Ii-
brary (libc), which is linked withSyscal | Exanpl e. See

|1 b/11ibc/syscalls. S for more information about how the
standard C library is implemented.
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0S/161 MIPS System Call Conventions

e Whenthesyscal | instruction occurs:
— An integer system call code should be located in registenB2 (

— Any system call arguments should be located in registersaBY R5 (al),
R6 (a2), and R7 (a3), much like procedure call arguments.

e When the system call returns

— register R7 (a3) will contain a O if the system call succeedea 1 if the
system call failed

— register R2 (v0) will contain the system call return valuthé system call
succeeded, or an error number (errno) if the system cadidail
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#def |

0S/161 System Call Code Definitions

ne SYS read 5
#define SYS wite 6
#defi ne SYS cl ose 7
#def i ne SYS reboot 8
#defi ne SYS sync 9
#defi ne SYS sbrk 10
This comes fronker n/ i ncl ude/ ker n/ cal | no. h. The files
In ker n/ i ncl ude/ ker n define things (like system call codes)
that must be known by both the kernel and applications.
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The OS/161 System Call and Return Processing

00400180 < syscall >:
400180: 0000000c syscall
400184: 10e00005 beqgz a3, 40019c < syscal |l +Oxlc>
400188: 00000000 nop
40018c: 3c011000 |lui at,0x1000
400190: ac220000 sw vO, O(at)
400194: 2403ffff 1i vi,-1
400198: 24021 fff 1i vO,-1
40019c: 03e00008 jr ra
4001a0: 00000000 nop

The system call and return processing, from the standaror&ri.
Like the rest of the library, this is unprivileged, userdecode.
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0S/161 MIPS Exception Handler

excepti on:
nmove k1, sp /[ Save previous stack pointer in k1 */
nfcO kO, cO_status [+ Get status register =/
andi kO, kO, CST KUp /* Check the we-were-in-user-node bit =*/

beq kO, $0, 1f [« |f clear,fromkernel, already have stack -
nop [+ delay slot =/
[+ Com ng fromuser node - |oad kernel stack into sp */
| a kO, curkstack [+ get address of "curkstack" =/
| w sp, 0(kO) [+ get its value =*/
nop [+ delay slot for the | oad */
1:
nfcO kO, cO _cause [+ Now, |oad the exception cause. =*/
j common_exception [+ Skip to commbn code */
nop [+ delay slot =/

When thesyscal | instruction occurs, the MIPS transfers control to
addres90x80000080. This kernel exception handler lives there. See
kern/ arch/ m ps/ m ps/ exception. S
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0S/161 User and Kernel Thread Stacks

application kernel

( \( N\ [ )

stack || data code memory stack data code

thread library

CPU regqisters

Each OS/161 thread has two stacks, one that is used while the
thread is executing unprivileged application code, andtardhat
IS used while the thread is executing privileged kernel code
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0S/161 MIPS Exception Handler (cont’d)

Thecommon_except i on code does the following:

1. allocates @rap frame on the thread’s kernel stack and saves the user-level
application’s complete processor state (all registergxkO and k1) into the
trap frame.

2. calls them ps_t r ap function to continue processing the exception.

3. whenm ps_t r ap returns, restore the application processor state from the
trap from to the registers

4. issue MIP3 r andr f e (restore from exception) instructions to return control
to the application code. Thea instruction takes control back to location
specified by the application program counter whensthecal | occurred,
and ther f e (which happens in the delay slot of the) restores the processor
to unprivileged mode
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OS/161 Trap Frame

application kernel

( \( N\ [ ) N\ [ )

stack || data code memory stack data code

E e . - — |
- VAN J J \ k J C J
/ thread library

trap frame with saved
application state

CPU regqisters

While the kernel handles the system call, the applicati@P)
state is saved in a trap frame on the thread’s kernel stackthan
CPU reqisters are available to hold kernel execution state.
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m ps_t r ap: Handling System Calls, Exceptions, and Interrupts

e Onthe MIPS, the same exception handler is invoked to hardlems calls,
exceptions and interrupts

e The hardware sets a code to indicate the reason (systenaxaadiption, or
Interrupt) that the exception handler has been invoked

e OS/161 has a handler function corresponding to each of tieesens. The
m ps_t r ap function tests the reason code and calls the appropriattidm
the system call handleni{ ps_syscal | ) in the case of a system call.

e M ps_trap can be found irkern/ arch/ m ps/ m ps/trap.c.

Interrupts and exceptions will be presented shortly
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0S/161 MIPS System Call Handler

m ps_syscal | (struct trapfrane =tf) {
assert (curspl ==0);
callno = tf->tf vO; retval = 0;
swtch (callno) {
case SYS reboot:
err = sys reboot(tf->tf _al); /* in kern/main/main.c =*/
br eak;

[+ Add stuff here =/

def aul t:
Kprintf("Unknown syscall %\n", callno);
err = ENGSYS;

br eak;

}
m ps_syscall checks the system call code and In-
vokes a handler for the Iindicated system call. See

kern/arch/ m ps/ m ps/syscall.c
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0S/161 MIPS System Call Return Handling

1 f (err) {

tf->tf _v0 = err;

tf->tf_a3 = 1; [+ signal an error =/
} else {

[+ Success. */

tf->tf vO = retval;

tf->tf _a3 = 0; [+ signal no error =/

[/ Advance the PC, to avoid the syscall again. =/
tf->tf _epc += 4;

[+ Make sure the syscall code didn't forget to | ower spl +
assert (curspl ==0);

m ps_syscal | mustensure that the kernel adheres to the system
call return convention.
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Exceptions

e EXceptions are another way that control is transferred fqmocess to the
kernel.

e EXceptions are conditions that occur during the executf@amanstruction by
a process. For example, arithmetic overflows, illegal uttons, or page
faults (to be discussed later).

e exceptions are detected by the hardware

e When an exception is detected, the hardware transfersotomta specific
address

e normally, a kernel exception handler is located at that esklr

Exception handling is similar to, but not identical to, gstcall
handling. (What is different?)
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MIPS Exceptions

EX | RQ 0 [+ Interrupt =/

EX MOD 1 [+ TLB Modify (wite to read-only page) =/
EX TLBL 2 [+ TLB m ss on | oad */

EX TLBS 3 [+ TLB m ss on store =*/

EX_ ADEL 4 [+ Address error on |oad */

EX ADES 5 /[~ Address error on store =*/

EX | BE 6 [+ Bus error on instruction fetch x/

EX DBE 7 [+ Bus error on data |load *orx store =/

EX _SYS 8 [+ Syscal |l =*/

EX BP 9 [~ Breakpol nt =/

EX R 10 /+* Reserved (illegal) instruction x/
EX CPU 11 /| ~ Coprocessor unusable =*/
EX OVF 12 [+ Arithnmetic overflow */

In OS/161,m ps_t r ap uses these codes to decide whether it has
been invoked because of an interrupt, a system call, or agpexc
tion.
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Interrupts

e Interrupts are a third mechanism by which control may besfeamed to the
kernel

e Interrupts are similar to exceptions. However, they aresedly hardware
devices, not by the execution of a program. For example:

— a network interface may generate an interrupt when a netpacket
arrives

— a disk controller may generate an interrupt to indicate itiads finished
writing data to the disk

— atimer may generate an interrupt to indicate that time hasquh
¢ Interrupt handling is similar to exception handling - cutrexecution context

IS saved, and control is transferred to a kernel interruptiea at a fixed
address.
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Interrupts, Exceptions, and System Calls: Summary

e Iinterrupts, exceptions and system calls are three mecharing which control
IS transferred from an application program to the kernel

e Wwhen these events occur, the hardware switches the CPUriatieged mode
and transfers control to a predefined location, at which aetdsandler
should be located

e the handler saves the application thread context so th&etimel code can be
executed on the CPU, and restores the application threddxtgust before
control is returned to the application
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Implementation of Processes

e The kernel maintains information about all of the processdise system in a
data structure often called the process table.

e Information about individual processes is stored in a $tingcthat is
sometimes called process control block (PCB). In practice, however,
Information about a process may not all be located in a sidgla structure.

e Per-process information may include:

— process identifier and owner
— current process state and other scheduling information
— lists of resources allocated to the process, such as opsn file

— accounting information

In OS/161, some process information (e.g., an address space
pointer) is kept in the hr ead structure. This works only because
each OS/161 process has a single thread.
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Implementing Timesharing

e whenever a system call, exception, or interrupt occurstrobis transferred
from the running program to the kernel

e at these points, the kernel has the ability to cause a cosiaith from the
running process’ thread to another process’ thread

e notice that these context switches always occur while aga®i¢hread is
executing kernel code

By switching from one process’s thread to another process’s

thread, the kernel timeshares the processor among muftrple
cesses.
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Two Processes in OS/161

application #1 kernel application #2
stack || data code stack data “ code || stack stack|| data || code
- PRI R || SN
I |
// oooon I |
I |
S L J U /Z ‘\\____Jt_p S YAS J y

/
\ thread library

trap frame for app #1

saved kernel thread
context for thread #1

CPU registers
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Timesharing Example (Part 1)
Process A Kernel Process B
| B’s thread is
| system call ready, not running
| or exception N
| or interrupt el
| return
| - |- _____1 _
P l
- |
/ - 7 A'sthread is v
_ ready, not running
context switch
Kernel switches execution context to Process B.
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Timesharing Example (Part 2)

Process A Kernel Process B

system call
or exception
or interrupt

context switch

—— B’s thread is
ready, not running

Kernel switches execution context back to process A.
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Implementing Preemption

e the kernel uses interrupts from the system timer to meaberpdssage of
time and to determine whether the running process’s quahasm®expired.

e atimer interrupt (like any other interrupt) transfers cohfrom the running
program to the kernel.

e this gives the kernel the opportunity to preempt the runtimmgad and
dispatch a new one.
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Preemptive Multiprogramming Example

Process A Kernel Process B
: timer interrupt
|
I S
: interrupt return :
| -
i I - Key:
il il -
- ready thread
N T o
> S running threac
|
N e —
context - L ________ .
switches - :
- I
- [ T
- I T
- |
T Foo
, :
|
T - —
N —
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System Calls for Process Management

Linux 0S/161
Creation fork,execve fork,execv
Destruction _exit,kill _exit
Synchronization wait,waitpid,pause, . waitpid
Attribute Mgmt || getpid,getuid,nice,getrusage, getpid
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The Process Model

e Although the general operations supported by the procésdane are
straightforward, there are some less obvious aspects oégsdoehaviour that
must be defined by an operating system.

Process Initialization: When a new process is created, how is it initialized?
What is in the address space? What is the initial thread gtihi2oes it
have any other resources?

Multithreading: Are concurrent processes supported, or is each process
limited to a single thread?

Inter-Process Relationships: Are there relationships among processes, e.q,
parent/child? If so, what do these relationships mean?
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Process Creation Example (Part 1)

Process A Kernel

system call
(CreateProcess)

Parent process (Process A) requests creation of a new process
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Process Creation Example (Part 2)

Process A Kernel Process B

system call
(CreateProcess)

—_ —_- —_- —_- —_= = 4

b __ L B’s thread is
ready, not running

e

system call return

Kernel creates new process (Process B)
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