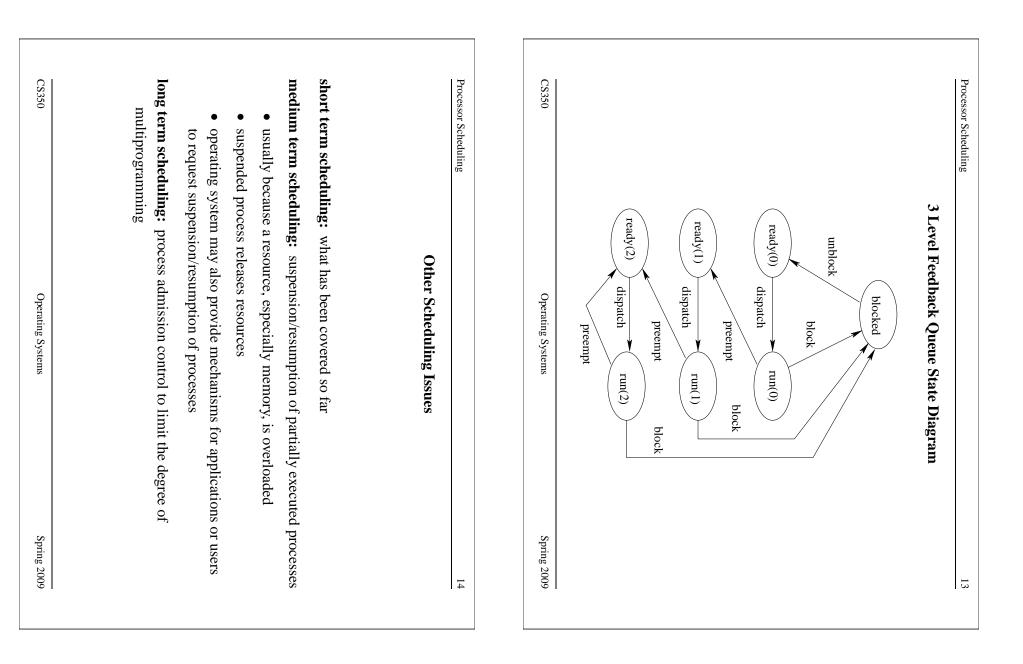
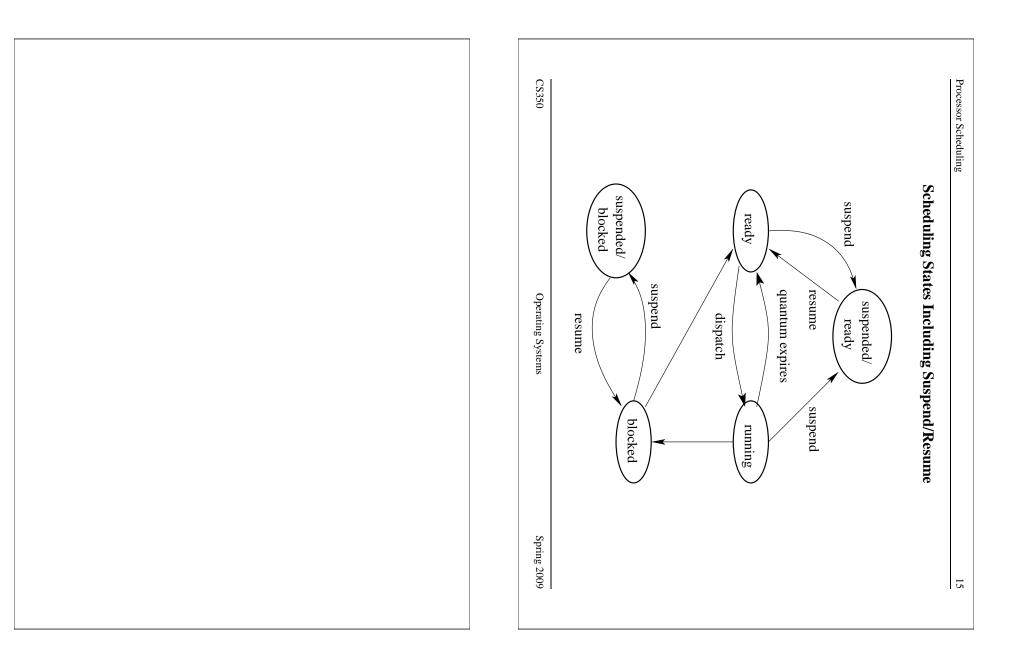

Spring 2009	Operating Systems	CS350	
dy state	a running thread that is preempted is moved to the ready state	– a running	
dically by a timer 1 above	interrupt handler, as well as in the circumstances listed above	- typically, interrupt	
		running	
thread to stop	A preemptive scheduler may, in addition, force a running thread to stop	• A preemptive	
		system)	
ided by the operating	the thread performs a Yield system call (if one is provided by the operating	– the thread	
1 operation	the thread blocks because of an I/O or synchronization operation	– the thread	
	the thread terminates	– the thread	
	processor through its own actions, e.g.,	processor thr	
hread gives up the	A non-preemptive scheduler runs only when the running thread gives up the	• A non-preem	
	Preemptive vs. Non-Preemptive		
2		Processor Scheduling	
Spring 2009	Operating Systems	CS350	
	performed and is not executing instructions	performe	
ation to be	during an I/O burst, a thread is waiting for an I/O operation to be	 during an 	
	during a CPU burst, a thread is executing instructions	– during a	
		bursts	
CPU bursts and I/O	A running thread can be modeled as alternating series of CPU bursts and I/O	• A running th	
	The Nature of Program Executions		
-		Processor Scheduling	

Spring 2009	CS350 Operating Systems	
Preemption	• Shortest Remaining Time First is a preemptive variant of SJF. Preemption may occur when a new thread enters the ready queue.	
b_i is its actual	where B_i is the predicted length of the <i>i</i> th CPU burst, and b_i is its actual length, and $0 \le \alpha \le 1$.	
	$B_{i+1} = \alpha b_i + (1-\alpha)B_i$	
thread based on considers all ly:	 Simplest approach is to estimate next burst length of each thread based on previous burst length(s). For example, exponential average considers all previous burst lengths, but weights recent ones most heavily: 	
	• SJF requires knowledge of CPU burst lengths	
ſ	• SJF minimizes average waiting time, but can lead to starvation	
xt CPU burst -	• ready threads are scheduled according to the length of their next CPU burst - thread with the shortest burst goes first	
	• non-preemptive	
	Shortest Job First (SJF) Scheduling	
4	Processor Scheduling	
Spring 2009	CS350 Operating Systems	
	• preempted thread goes to the end of the FIFO ready queue	
	already blocked	
it has not	• running thread is preempted after a fixed time quantum, if it has not	
	• preemptive version of FCFS	
	Round-Robin:	
	FIFO ready queue	
ates	• non-preemptive - each thread runs until it blocks or terminates	
	First-Come, First-Served (FCFS):	
	FCFS and Round-Robin Scheduling	
ω	Processor Scheduling	





Spring 2009	Operating Systems	CS350
+ 1 ready queue	a level i thread that is preempted goes into the level $i + 1$ r	• a level i thread th
	newly ready threads go in to queue 0	 newly ready threat
	threads in queue i use quantum q_i , and $q_i < q_j$ if $i < j$	• threads in queue
eads in any queue	scheduler never chooses a thread in queue i if there are threads in any queue $j < i$.	• scheduler never c $j < i$.
	scheduler maintains several ready queues	 scheduler maintai
bursts)	gives priority to interactive threads (those with short CPU bursts)	• gives priority to i
	Multilevel Feedback Queues	
12		Processor Scheduling
Spring 2009	Operating Systems	CS350
ds that have waited	a mechanism for elevating the priority of low priority threads that have waited a long time	• row priority threa a mechanism for a long time
al priority	use any scheduling heuristic to schedule threads of equal priority	- use any sched
ty thread	always choose higher priority threads over lower priority thread	 always choose
		• scheduler can:
r)	application specification (e.g., Linux setpriority/sched_setscheduler)	 application specification (e.g., Linux setprior
	lassification	 application classification
	ation	 user classification
	for example, priorities could be based on	• for example, prio
s into account	a scheduler may be asked to take process or thread priorities into account	• a scheduler may t
	Prioritization	

Operating Systems

