Threads and Concurrency 1

Review: Program Execution

e Registers

— program counter, stack pointer,.
e Memory

— program code

— program data

— program stack containing procedure activiation records
e CPU

— fetches and executes instructions

CS350 Operating Systems Spring 2009

Threads and Concurrency 2

Review: MIPS Register Usage

See al so: kern/arch/ m ps/include/asndefs. h

RO, zero = ## zero (always returns 0)

R1, at = ## reserved for use by assenbl er

R2, vO = ## return value / system call nunber
R3, vi1 = ## return val ue

R4, a0l = ## 1st argunent (to subroutine)

R5, al = ## 2nd ar gunent

R6, a2 = ## 3rd argunent

R7, a3 = ## 4th argunent

CS350 Operating Systems Spring 2009

Threads and Concurrency

Review: MIPS Register Usage

RO8-R15, tO0-t7 = ## tenps (not preserved by subroutines)
R24-R25, t8-t9 = ## tenps (not preserved by subroutines)
can be used w thout saving
R16- R23, s0-s7 = ## preserved by subroutines
save before using,
restore before return
R26- 27, kO-k1 = ## reserved for interrupt handl er
R28, ap = ## gl obal pointer
(for easy access to sonme vari abl es)
R29, sp = ## stack pointer
R30, s8/fp = ## 9th subroutine reg / franme pointer
R31, ra = ## return addr (used by jal)
CS350 Operating Systems Spring 2009

Threads and Concurrency

What is a Thread?

¢ Athread represents the control state of an executing pmagra

¢ Athread has an associateohtext (or state), which consists of

— the processor’'s CPU state, including the values of the progrounter
(PC), the stack pointer, other registers, and the executiae
(privileged/non-privileged)

— a stack, which is located in the address space of the thrpeatess

Imagine that you would like to suspend the program execuéind
resume it again later. Think of the thread context as themn&bion
you would need in order to restart program execution fromreshe
it left off when it was suspended.

CS350

Operating Systems Spring 2009

Threads and Concurrency

Thread Context

memory
! \
\

| \

1 \
/1| stack || data code
| |
! \
! \
| \
| N b\/
__ TN thread context
I
| /_

\ 3 /7

CPU registers ~
Spring 2009

CS350 Operating Systems

Threads and Concurrency

Concurrent Threads

e more than one thread may exist simultaneously (why migkthikia good
idea?)

e each thread has its own context, though they may share accessggram
code and data

e 0n a uniprocessor (one CPU), at most one thread is actuatyuérg at any
time. The others are paused, waiting to to resume execution.

e 0n a multiprocessor, multiple threads may execute at the $ane, but if
there are more threads than processors then some threats péused and

waiting

CS350 Operating Systems Spring 2009

Threads and Concurrency 7

Example: Concurrent Mouse Simulations

static void nouse_simulation(void * unusedpoi nter,
unsi gned | ong nousenunber)

int i; unsigned int bow;

for(i=0;i<NunlLoops;i++) {
/[for now, this npbuse chooses a random bowl from
* which to eat, and it is not synchronized with
* other cats and m ce.

/+ legal bow nunbers range from1l to NunBow s */
bow = ((unsigned int)randon() % NunBowl s) + 1
nmouse_eat (bow , 1);

/* indicate that this mouse is finished */
V(Cat MouseWai t) ;

CS350 Operating Systems Spring 2009

Threads and Concurrency 8

Implementing Threads

e athread library is responsibile for implementing threads

¢ the thread library stores threads’ contexts (or pointethedhreads’ contexts)
when they are not running

¢ the data structure used by the thread library to store adlueatext is
sometimes called thread control block

In the OS/161 kernel’s thread implementation, thread castare
stored int hr ead structures.

CS350 Operating Systems Spring 2009

Threads and Concurrency

Thread Library and Two Threads

memory

stack 1 stack 2

*

thread library

thread 2 context (waiting thread)

CPU registers thread 1 context (running thread)

CS350 Operating Systems Spring 2009

Threads and Concurrency 10

The OS/161t hr ead Structure

[+ see kern/include/thread. h */

struct thread {

I+ Private thread nmenbers -
struct pcb t_pcb; / *
char *t _narme; [*
const void *t_sleepaddr; /=*
char =t _stack; [*

/= Public thread nmenbers -
struct addrspace *t_vnspace;
struct vnode *t_cwd;

b

internal to the thread system x/

m sc. hardware-specific stuff =/
thread nane */

used for synchroni zation =/
pointer to the thread’ s stack =/

can be used by ot her code */

[+ address space structure */
[+ current working directory =*/

CS350

Operating Systems

Spring 2009

Threads and Concurrency 11

Thread Library and Two Threads (0S/161)

memory
——
stack 1 stack 2 code
- “
I
, I = | \
\ / thread library
thread structures
CPU registers thread 1 context (running thread)
CS350 Operating Systems Spring 2009
Threads and Concurrency 12

Context Switch, Scheduling, and Dispatching

the act of pausing the execution of one thread and resumaexécution of
another is called éhread) context switch

what happens during a context switch?

1. decide which thread will run next
2. save the context of the currently running thread
3. restore the context of the thread that is to run next

the act of saving the context of the current thread and insgethe context of
the next thread to run is calletiispatching (the next thread)

sounds simple, but .

— architecture-specific implementation

— thread must save/restore its context carefully, sinceathexecution
continuously changes the context

— can be tricky to understand (at what point does a thread lacgiap?
what is it executing when it resumes?)

CS350 Operating Systems Spring 2009

Threads and Concurrency 13

Dispatching on the MIPS (1 of 2)

[+ see kern/arch/m ps/mps/switch.S */
m ps_swi t ch:
/+ a0/al points to old/ new thread’ s control block */

[+ Allocate stack space for saving 11 registers. 11x4 = 44 «/
addi sp, sp, -44

[+ Save the registers */
swra, 40(sp)
sw gp, 36(sp)
sw s8, 32(sp)
sw s7, 28(sp)
sSw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)

sw s2, 8(sp)
sw sl1, 4(sp)
sw s0, 0O(sp)

/+ Store the old stack pointer in the old control block =/
sw sp, 0(a0)

CS350 Operating Systems Spring 2009

Threads and Concurrency 14

Dispatching on the MIPS (2 of 2)

[+ Get the new stack pointer fromthe new control block */
lw sp, 0(al)
nop /=* delay slot for |oad */

[+ Now, restore the registers */
lw s0, O(sp)
lw sl, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
I w s4, 16(sp)
Iw s5, 20(sp)
I w s6, 24(sp)
lw s7, 28(sp)
I w s8, 32(sp)
l'w gp, 36(sp)
Ilwra, 40(sp)

nop /+ delay slot for load =/

j ra /* and return. =*/
addi sp, sp, 44 /+ in delay slot =/
.end mps_switch

CS350 Operating Systems Spring 2009

Threads and Concurrency 15

Thread Library Interface

¢ the thread library interface allows program code to mamifguthreads
e one key thread library interface functionYield()

¢ Yield() causes the calling thread to stop and wait, and catlgethread library
to choose some other waiting thread to run in its place. Ierotfords, Yield()
causes a context switch.

e in addition toYi el d(), thread libraries typically provide other
thread-related services:
— create new thread
— end (and destroy) a thread

— cause a thread tdock (to be discussed later)

CS350 Operating Systems Spring 2009

Threads and Concurrency 16

The OS/161 Thread Interface (incomplete)

[+ see kern/include/thread. h =/

[+ create a new thread =/

int thread fork(const char *nane,
voi d »datal, unsigned |ong data2,
void (*func)(void *, unsigned |ong),
struct thread *x*ret);

/= destroy the calling thread */
void thread_exit(void);

[+ |l et another thread run =/
void thread_yiel d(void);

/+ block the calling thread */
voi d thread_sl eep(const void *addr);

/* unbl ock bl ocked threads x/
voi d thread wakeup(const void *addr);

CS350 Operating Systems Spring 2009

Threads and Concurrency 17

Creating Threads Usingt hr ead_f or k()

[+ from catnouse() in kern/asstl/catnouse.c */
[+ Start NunmM ce nouse_sinul ation() threads. =*/
for (index = 0; index < NumM ce; index++) {

error = thread_fork("nouse_sinulation thread", NULL, i ndex,

nmouse_si nmul ati on, NULL) ;
if (error) {
pani c("mouse_simulation: thread_fork failed: %\n",
strerror(error));

[+ wait for all of the cats and mice to finish before
termnating */

for(i=0;i<(NunmCat s+NumM ce) ;i ++) {
P(Cat MouseWai t) ;

CS350 Operating Systems Spring 2009

Threads and Concurrency 18

Scheduling

e scheduling means deciding which thread should run next
e scheduling is implemented bysaheduler, which is part of the thread library

¢ simple FIFO scheduling:

scheduler maintains a queue of threads, often calledetuy queue

the first thread in the ready queue is the running thread

on a context switch the running thread is moved to the endeoféhdy
queue, and new first thread is allowed to run

newly created threads are placed at the end of the ready queue

e more on scheduling later .

CS350 Operating Systems Spring 2009

Threads and Concurrency 19

Preemption

e Yi el d() allows programs teoluntarily pause their execution to allow
another thread to run

e sometimes it is desirable to make a thread stop running évigmais not
calledYi el d()

e this kind ofinvoluntary context switch is calleg@reemption of the running
thread

¢ to implement preemption, the thread library must have a meéfgetting
control” (causing thread library code to be executed) elieough the
application has not called a thread library function

e this is normally accomplished usimgterrupts

CS350 Operating Systems Spring 2009

Threads and Concurrency 20

Review: Interrupts
e an interrupt is an event that occurs during the executionpsbgram

e interrupts are caused by system devices (hardware), gigen a disk
controller, a network interface

e when an interrupt occurs, the hardware automatically temsgontrol to a
fixed location in memory

¢ at that memory location, the thread library places a proeedalled an
interrupt handler
¢ the interrupt handler normally:

1. saves the current thread context (in OS/161, this is savattap frame
on the current thread’s stack)

2. determines which device caused the interrupt and pesfdewice-specific
processing

3. restores the saved thread context and resumes exequtluat context
where it left off at the time of the interrupt.

CS350 Operating Systems Spring 2009

Threads and Concurrency 21

Round-Robin Scheduling

e round-robin is one example of a preemptive scheduling policy

e round-robin scheduling is similar to FIFO scheduling, etdbat it is
preemptive

e as in FIFO scheduling, there is a ready queue and the threhd &bnt of the
ready queue runs

e unlike FIFO, a limit is placed on the amount of time that a #trean run
before it is preempted

e the amount of time that a thread is allocated is called thedwlmgquantum

e when the running thread’s quantum expires, it is preemptelchaoved to the
back of the ready queue. The thread at the front of the readyeajis
dispatched and allowed to run.

CS350 Operating Systems Spring 2009

Threads and Concurrency 22

Implementing Preemptive Scheduling

e suppose that the system timer generates an interrupt eviemg units, e.g.,
once every millisecond

e suppose that the thread library wants to use a schedulingumg = 500¢,
i.e., it will preempt a thread after half a second of execautio

¢ to implement this, the thread library can maintain a vagatallled
runni ng_ti me to track how long the current thread has been running:

— when a thread is intially dispatchedynni ng_t i ne is set to zero

— when an interrupt occurs, the timer-specific part of therrofg handler
can increment unni ng_t i ne and then test its value
« if runni ng_t i ne is less thany, the interrupt handler simply returns
and the running thread resumes its execution
« if runni ng_t i me is equal tog, then the interrupt handler invokes
Yi el d() to cause a context switch

CS350 Operating Systems Spring 2009

Threads and Concurrency 23

0S/161 Stack after Preemption

application
stack frame(s)

stack growth

trap frame

interrupt handling

stack frame(s)

Yield()
stack frame

saved thread
context

CS350 Operating Systems Spring 2009

Threads and Concurrency 24

0S/161 Stack after Voluntary Context Switch ¢ hr ead_yi el d())

application
stack frame(s)

stack growth

thread_yield()
stack frame

saved thread
context

CS350 Operating Systems Spring 2009

