Virtual Memory 1

Virtual and Physical Addresses

Physical addresses are provided directly by the machine.

— one physical address space per machine

— the size of a physical address determines the maximum ambunt
addressable physical memory

Virtual addresses (or logical addresses) are addressés@idy the OS to
processes.

— one virtual address spaper process

Programs use virtual addresses. As a program runs, the e dwith help
from the operating system) converts each virtual addreagto/sical address.

the conversion of a virtual address to a physical addressledaddress
translation

On the MIPS, virtual addresses and physical addressex dogs
long. This limits the size of virtual and physical addresacgs.

CS350 Operating Systems Winter 2009

Virtual Memory 2

What is in a Virtual Address Space?

0x00400000 — 0x00401b30
text (program code) and read—only data

/

growth

A /
0x10000000 - 0x101200b0 mﬂmox
data high end of stack: Ox7fffffff

0x00000000 Oxffffffff

This diagram illustrates the layout of the virtual addrgsace for
the OS/161 test applicatidrest bi n/ sor t

CS350 Operating Systems Winter 2009

Virtual Memory 3

Simple Address Translation: Dynamic Relocation

e hardware provides memory management umvhich includes aelocation
register

e atrun-time, the contents of the relocation register are addeach virtual
address to determine the corresponding physical address

¢ the OS maintains a separate relocation register value &br gacess, and
ensures that relocation register is reset on each contédsw

e Properties
— OS must allocate/deallocate variable-sized chunks ofipalysiemory

— potential forexternal fragmentationf physical memory: wasted,
unallocated space

— each virtual address space corresponds to a contiguous oapyysical
addresses

CS350 Operating Systems Winter 2009

Virtual Memory 4

Dynamic Relocation: Address Space Diagram

Proc 1 virtual address space physical memory
0 R 0

max1

b A + maxl

max2

Proc 2
virtual address space

C + max2

CS350 Operating Systems Winter 2009

Virtual Memory 5

Dynamic Relocation Mechanism

virtual address physical addres
—~— v hits——> <~ m bits—

_ | _ |
\

—®

—~<— m bits —>

relocation
register
CS350 Operating Systems Winter 2009
Virtual Memory 6

Address Translation: Paging

e Each virtual address space is divided into fixed-size chuakedpages

e The physical address space is divided ifntanes Frame size matches page
size.

e OS maintains @age tablefor each process. Page table specifies the frame in
which each of the process’s pages is located.

e Atruntime, MMU translates virtual addresses to physicaigishe page table
of the running process.

e Properties
— simple physical memory management

— potential forinternal fragmentatiorof physical memory: wasted, allocated
space

— virtual address space need not be physically contiguoubysigal space
after translation.

CS350 Operating Systems Winter 2009

Virtual Memory 7
Address Space Diagram for Paging
Proc 1 virtual address space physical memory
0 0
max1
0
max2
Proc 2
virtual address space
m
2 -1
CS350 Operating Systems Winter 2009
Virtual Memory 8
Paging Mechanism
virtual address physical address
~— v bits—> ~— mbits —>
7 page # 7 ommmi 7 frame # 7 oawmi
A A
j--F-----=-=--- b
|
|
|
|
|
|
[|
~— m bits —>
page table base
register
\» frame #
protection and page table
other flags
CS350 Operating Systems Winter 2009

Virtual Memory 9

Memory Protection

e during address translation, the MMU checks to ensure tlegptbcess uses
only valid virtual addresses

— typically, each PTE contains\alid bit which indicates whether that PTE
contains a valid page mapping

— the MMU may also check that the virtual page number does migxa
PTE beyond the end of the page table
e the MMU may also enforce other protection rules
— typically, aread-onlybit each PTE may be set to specify that the
corresponding page may not be modified by the process

e if a process attempts to violated these protection rulesiiU raises an
exception, which is handled by the kernel

The kernel controls which pages are valid and which are prede
by setting the the contents of PTEs and/or MMU registers.

CS350 Operating Systems Winter 2009

Virtual Memory 10

Roles of the Operating System and the MMU (Summary)

e oOperating system:
save/restore MMU state on context switches

create and manage page tables

manage (allocate/deallocate) physical memory

handle exceptions raised by the MMU
e MMU (hardware):

— translate virtual addresses to physical addresses

— check for and raise exceptions when necessary

CS350 Operating Systems Winter 2009

Virtual Memory 11

Remaining Issues

translation speed: Address translation happens very frequently. (How
frequently?) It must be fast.

sparseness:Many programs will only need a small part of the availablecgp@ar
their code and data.

the kernel: Each process has a virtual address space in which to run. &sbat
the kernel? In which address space does it run?

CS350 Operating Systems Winter 2009

Virtual Memory 12

Speed of Address Translation

e Execution of each machine instruction may involve one, twmore memory
operations
— one to fetch instruction
— one or more for instruction operands
e Address translation through a page table adds one extra peperation

(for page table entry lookup) for each memory operationgraréd during
instruction execution

— Simple address translation through a page table can catiatisin
execution rate in half.

— More complex translation schemes (e.g., multi-level pgpare even
more expensive.
e Solution: include a Translation Lookaside Buffer (TLB) etMMU
— TLB is a fast, fully associative address translation cache

— TLB hit avoids page table lookup

CS350 Operating Systems Winter 2009

Virtual Memory 13

TLB

e Each entry in the TLB contains a (page number, frame numlazer) p

¢ If address translation can be accomplished using a TLB eamtoess to the
page table is avoided.

e Otherwise, translate through the page table, and add thiingstranslation
to the TLB, replacing an existing entry if necessary. lmadware controlled
TLB, this is done by the MMU. In goftware controlled’LB, it is done by the
kernel.

e TLB lookup is much faster than a memory access. TLB is an é&sboe
memory - page numbers of all entries are checked simultahetor a match.
However, the TLB is typically smalll()? to 10® entries).

¢ If the MMU cannot distinguish TLB entries from different agds spaces,
then the kernel must clear or invalidate the TLB. (Why?)

CS350 Operating Systems Winter 2009

Virtual Memory 14

The MIPS R3000 TLB

e The MIPS has a software-controlled TLB than can hold 64 esiri

e Each TLB entry includes a virtual page number, a physicah&aumber, an
address space identifier (not used by OS/161), and sevegsi(fialid,
read-only)

e OS/161 provides low-level functions for managing the TLB:

TLB _Write: modify a specified TLB entry

TLB _Random: modify a random TLB entry
TLB _Read: read a specified TLB entry

TLB _Probe: look for a page number in the TLB

¢ If the MMU cannot translate a virtual address using the TLBii$es an
exception, which must be handled by OS/161

Seekern/ arch/ m ps/include/tlb.h

CS350 Operating Systems Winter 2009

Virtual Memory 15

Handling Sparse Address Spaces: Sparse Page Tables

0400400000 - 0x00401630
am code) and read-only data

e
— 7 7 oo _ 7

0x10000000 - 0x10120000
data

0x00000000

e Consider the page table foest bi n/ sort, assuming a 4 Kbyte page size:

— need2!'® page table entries (PTES) to cover the bottom half of theairt
address space.

— the text segment occupies 2 pages, the data segment oc28gipages,
and OS/161 sets the initial stack size to 12 pages

e The kernel will mark a PTE as invalid if its page is not mapped.

e Inthe page table farest bi n/ sor t, only 302 of 2!° PTEs will be valid.

An attempt by a process to access an invalid page causes thé MM
to generate an exception (known apage faul} which must be
handled by the operating system.

CS350 Operating Systems Winter 2009

Virtual Memory 16

Segmentation

e Often, programs (likesor t) need several virtual address segments, e.g, for
code, data, and stack.

e One way to support this is to tusegmentsto first-class citizens, understood
by the application and directly supported by the OS and thelMM

¢ Instead of providing a single virtual address space to eemtegs, the OS
provides multiple virtual segments. Each segment is likepagate virtual
address space, with addresses that start at zero.

e With segmentation, a process virtual address can be thadigisthaving two
parts:

(segment ID, address within segment)

e Each segment:

— can grow (or shrink) independently of the other segmentso gome
maximum size

— has its own attributes, e.g, read-only protection

CS350 Operating Systems Winter 2009

Virtual Memory 17

Segmented Address Space Diagram

Proc 1 physical memory
0 0

segment 0

0
segment 1 I

0
segment 2 .

Proc 2

segment 0

CS350 Operating Systems Winter 2009

Virtual Memory 18

Mechanism for Translating Segmented Addresses

physical address

—~<— m bits —>

]

®

virtual address

segment table

—~<— m bits —>

segment table base
register

length / start

protection

This translation mechanism requires physically contigualloca-
tion of segments.

CS350 Operating Systems Winter 2009

Virtual Memory 19

Combining Segmentation and Paging

Proc 1 physical memory
0 0

segment 0

0
segment 1 I

0
segment 2 .

Proc 2

segment 0

CS350 Operating Systems Winter 2009

Virtual Memory 20

Combining Segmentation and Paging: Translation Mechanism

virtual address physical address

v bits —~<— m bits —>

7 seg # 7 _ommmL offset 7 frame # | offset

segment table page table

1

—~<— m bits —>

segment table base
register

page table
length

protection

CS350 Operating Systems Winter 2009

Virtual Memory

21

Shared Virtual Memory

shared virtual memory is:

virtual memory sharing allows parts of two or more addres&ep to overlap

— away to use physical memory more efficiently, e.g., one cdy o

program can be shared by several processes

— a mechanism for interprocess communication

to the same physical address

unit of sharing can be a page or a segment

sharing is accomplished by mapping virtual addresses feweral processes

CS350 Operating Systems Winter 2009
Virtual Memory 22
Shared Pages Diagram
Proc 1 virtual address space physical memory
0 0
max1
0
max2
Proc 2
virtual address space
m
2 -1
CS350 Operating Systems Winter 2009

Virtual Memory 23

Shared Segments Diagram

Proc 1 physical memory
0 0
segment 0
(shared) /
0
segment 1 I
0
segment 2 .
Proc 2
0
segment 0
segment 1
(shared) m
2 -1
CS350 Operating Systems Winter 2009
Virtual Memory 24

0S/161 Address Spaces: dumbvm
e OS/161 starts with a very simple virtual memory implemeatat

¢ virtual address spaces are describe@yr space objects, which record
the mappings from virtual to physical addresses

struct addrspace {

#i f OPT_DUMBVM
vaddr _t as_vbasel; /* base virtual address of code segnment =/
paddr _t as_pbasel; /* base physical address of code segnent =/
size_t as_npagesl; /* size (in pages) of code segnment =/
vaddr _t as_vbase2; /* base virtual address of data segnment =/
paddr _t as_pbase2; /* base physical address of data segnent =/
size_t as_npages2; /* size (in pages) of data segnent =/
paddr _t as_stackpbase; /* base physical address of stack =*/

#el se
[+ Put stuff here for your VM system x/

#endi f

}s

This amounts to a slightly generalized version of simpleasgit
relocation, with three bases rather than one.

CS350 Operating Systems Winter 2009

Virtual Memory 25

Address Translation Under dunbvm

e the MIPS MMU tries to translate each virtual address usiegetfitries in the
TLB

¢ If there is no valid entry for the page the MMU is trying to tsdette, the
MMU generates a page fault (called atdress exceptign

e Thevmf aul t function (se&ker n/ ar ch/ m ps/ m ps/ dunbvm c)
handles this exception for the OS/161 kernel. It uses inédion from the
current processaddr space to construct and load a TLB entry for the page.

e On return from exception, the MIPS retries the instructiwet taused the
page fault. This time, it may succeed.

vmf aul t is not very sophisticated. If the TLB fills up, OS/161
will crash!

CS350 Operating Systems Winter 2009

Virtual Memory 26

An Address Space for the Kernel

e Each process has its own address space. What about theXkernel

¢ two possibilities

Kernel in physical space: disable address translation in privileged system
execution mode, enable it in unprivileged mode

Kernel in separate virtual address space:need a way to change address
translation (e.g., switch page tables) when moving betvpesiieged and
unprivileged code

e 0OS/161, Linux, and other operating systems use a third apjprahe kernel
is mapped into a portion of the virtual address spacevefy process

e memory protection mechanism is used to isolate the kerosi &pplications

¢ one advantage of this approach: application virtual adeeée.g., system call
parameters) are easy for the kernel to use

CS350 Operating Systems Winter 2009

Virtual Memory 27

The Kernel in Process’ Address Spaces

Kernel
(shared, protected)

Process 1 Process 2
Address Space Address Spas

Attempts to access kernel code/data in user mode resultrimonye
protection exceptions, not invalid address exceptions.

CS350 Operating Systems Winter 2009

Virtual Memory 28

Address Translation on the MIPS R3000

2 GB 2 GB
<«— user space ————><+—— kernel space ——
kuseg ksegO || ksegl kseg2
0.5GB || 0.5GB 1GB
A A A M
0xc0000000
TLB mapped 0xa0000000
0x00000000 0x80000000 OXFFFFEFFF
unmapped, cached unmapped, uncached

In OS/161, user programs live in kuseg, kernel code and tata s
tures live in ksegO, devices are accessed through ksegksag@
is not used.

CS350 Operating Systems Winter 2009

Virtual Memory 29

Loading a Program into an Address Space

e When the kernel creates a process to run a particular progframst create
an address space for the process, and load the program’'sacddkata into
that address space

e A program’s code and data is described ireaecutable filewhich is created
when the program is compiled and linked

e OS/161 (and other operating systems) expect executaldddilee in ELF
(Executable andl inking Format) format

e the OS/16lexecv system call, which re-initializes the address space of a
process

#i ncl ude <uni std. h>
i nt
execv(const char *program char =*xargs)

e Thepr ogr amparameter of thexecv system call should be the name of the
ELF executable file for the program that is to be loaded ingoettidress space.

CS350 Operating Systems Winter 2009

Virtual Memory 30

ELF Files

e ELF files contain address space segment descriptions, \ahgchseful to the
kernel when it is loading a new address space

¢ the ELF file identifies the (virtual) address of the prografii& instruction

¢ the ELF file also contains lots of other information (e.gctgs descriptors,
symbol tables) that is useful to compilers, linkers, delauggloaders and
other tools used to build programs

CS350 Operating Systems Winter 2009

Virtual Memory 31

Address Space Segments in ELF Files

e Each ELF segment describes a contiguous region of the vatitaess space.

e For each segment, the ELF file includes a segrmeageand a header, which
describes:

the virtual address of the start of the segment

the length of the segment in the virtual address space

the location of the start of the image in the ELF file

the length of the image in the ELF file

e the image is an exact copy of the binary data that should luketbanto the
specified portion of the virtual address space

¢ the image may be smaller than the address space segmenicmaalse the
rest of the address space segment is expected to be zedo-fille

To initialize an address space, the kernel copies images tine
ELF file to the specifed portions of the virtual address space

CS350 Operating Systems Winter 2009

Virtual Memory 32

ELF Files and OS/161

e OS/161'sdunbvmimplementation assumes that an ELF file contains two
segments:

— atext segmentontaining the program code and any read-only data

— adata segmentontaining any other global program data
¢ the ELF file does not describe the stack (why not?)

e dunbvmcreates atack segmerior each process. It is 12 pages long, ending
at virtual addres®Ox7f fff f f f

Look at kern/ user prog/ | oadel f.c to see how OS/161
loads segments from ELF files

CS350 Operating Systems Winter 2009

Virtual Memory 33

ELF Sections and Segments

¢ Inthe ELF file, a program’s code and data are grouped togetteesections
based on their properties. Some sections:

.text: program code

.rodata: read-only global data

.data: initialized global data

.bss: uninitialized global data (Block Started by Symbol)

.sbss: small uninitialized global data
¢ not all of these sections are present in every ELF file

e normally
— the. t ext and. r odat a sections together form the text segment
— the. dat a, . bss and. sbss sections together form the data segement

e space follocal program variables is allocated on the stack when the program
runs

CS350 Operating Systems Winter 2009

Virtual Memory 34

The segnent s. ¢ Example Program (1 of 2)

#i ncl ude <uni std. h>
#define N (200)

int x = Oxdeadbeef;

int yl;

int y2;

int y3;

int array[4096];

char const *str = "Hello World\n";
const int z = Oxabcddcba;

struct exanple {
i nt ypos;
i nt Xxpos;

1

CS350 Operating Systems Winter 2009

Virtual Memory

35

The segnent s. ¢ Example Program (2 of 2)

int value = 1;

i nt
mai n()
{
int count = O;
const
yl = N
y2 = 2;
count = x + y1;
y2 = z + y2 + val ue;

r eboot (RB_POWERCFF) ;

return 0; /x avoid conpiler warnings */
}

CS350 Operating Systems Winter 2009
Virtual Memory 36
ELF Sections for the Example Program

Section Headers:

[Nr] Nare Type Addr Of Size ES Flg
[O] NULL 00000000 000000 000000 00

[1] .reginfo MPS_REG NFO 00400094 000094 000018 18 A
[2] .text PROGBI TS 004000b0 0000b0 000200 00 AX
[3] .rodata PROGBI TS 004002b0 0002b0 000020 00 A
[4] .data PROGBI TS 10000000 001000 000010 00 WA
[5] .sbss NOBI TS 10000010 001010 000014 00 WAp
[6] .Dbss NOBI TS 10000030 00101c 004000 00 WA
[7] .comment PROGBITS 00000000 00101c 000036 00

w_waw” W(wite), A (alloc), X (execute), p (processor specific)

Size
##t Of
Addr

of f set
= virtual

nunber of bytes (e.g.

. text

into the ELF file

addr ess

is 0x200 = 512 bytes

The cs350-readel f program can be used to inspect OS/161 MIPS

ELF files:cs350-r eadel f

-a segnents

CS350

Operating Systems

Winter 2009

Virtual Memory 37

ELF Segments for the Example Program

Pr ogr am Header s:

Type O fset Vi rt Addr PhysAddr FileSiz MenSiz Flg Align
REG NFO 0x000094 0x00400094 0x00400094 0x00018 0x00018 R 0x4
LOAD 0x000000 0x00400000 0x00400000 0x002d0 0x002d0 R E 0x1000
LOAD 0x001000 0x10000000 0x10000000 0x00010 0x04030 RW 0x1000

segment info, like section info, can be inspected usingg®@50- r eadel f
program

the REGINFO section is not used

the first LOAD segment includes the .text and .rodata sestion

the second LOAD segment includes .data, .sbss, and .bss

CS350 Operating Systems Winter 2009

Virtual Memory 38

Contents of the Example Program’s. t ext Section

Contents of section .text:
4000b0 3c1c1001 279c8000 3cosffff 3508fff8 <...’...<...b5.

Decodi ng 3c1c1001 to determ ne instruction

0x3cl1lc1001 = binary 111100000111000001000000000001
0011 1100 0001 1100 0001 0000 0000 0001

instr | rs | rt [i medi at e

6 bits | 5 bits| 5 bits| 16 bits

001111 | 00000 | 11100 | 0001 0000 0000 0001

LU | O | reg 28| 0x1001

LU | unused| reg 28| 0x1001

Load unsigned imediate into rt (register target)
lui gp, 0x1001

The ¢s350- obj dunp program can be used to inspect OS/161 MIPS
ELF file section contentss350- obj dunp -s segnents

CS350 Operating Systems Winter 2009

Virtual Memory 39

Contents of the Example Program’s. r odat a Section

Contents of section .rodata:
4002b0 48656¢c6¢ 6f 20576f 726c640a 00000000 Hello World.
4002c0 abcddcba 00000000 00000000 00000000

0x48 = 'H O0x65 = e’ 0x0a = '\n" 0x00 = '"\(O’

Align next int to 4 byte boundary

const int z = Oxabcddcbha

1f conpiler doesn’t prevent z frombeing witten,
then the hardware could

Size = 0x20 = 32 bytes "Hello Wrld\n\0" = 13 + 3 padding = 16

+ const int z =4 =20
Then align to the next 16 byte boundry at 32 bytes.

The. r odat a section contains the “Hello World” string literal and the
constant integer variable.

CS350 Operating Systems Winter 2009

Virtual Memory 40

Contents of the Example Program’s. dat a Section

Contents of section .data:
10000000 deadbeef 004002b0 00000000 00000000 @.........

Size = 0x10 bytes = 16 bytes

int x = deadbeef (4 bytes)

char const *str = "Hello Wrld\n"; (4 bytes)
value stored in str = 0x004002b0.

NOTE: this is the address of the start

of the string literal in the .rodata section

The. dat a section contains the initialized global variabtsr andx.

CS350 Operating Systems Winter 2009

Virtual Memory 41

Contents of the Example Program’s. bss and . sbss Sections

10000010

A _bss start
10000010 A _edata
10000010 A _fbss
10000010 S y3 ## S indicates sbss section
10000014 S y2
10000018 S y1
1000001c S errno
10000020 S _ argv
10000030 array ## B indicates bss section

B
10004030 A _end

Theyl, y2, andy3 variables are in the sbss section. The
arr ay variable is in the bss section. There are no values for
these variables in the ELF file, as they are uninitialized.e Th
cs350- nmprogram can be used to inspect symbols defined in
ELF files:cs350-nm - b segnents

CS350 Operating Systems Winter 2009

Virtual Memory 42

System Call Interface for Virtual Memory Management

e much memory allocation is implicit, e.g.:
— allocation for address space of new process

— implicit stack growth on overflow

e OS may support explicit requests to grow/shrink addressespag., Unix
br k system call.

¢ shared virtual memory (simplified Solaris example):

Create: shm d shnget (key, si ze)
Attach: vaddr shmat (shm d, vaddr)
Detach: shndt (vaddr)

Delete: shnttl (shm d, | PC.RM D)

CS350 Operating Systems Winter 2009

Virtual Memory 43

Exploiting Secondary Storage

Goals:

¢ Allow virtual address spaces that are larger than the phladdress space.

¢ Allow greater multiprogramming levels by using less of thaitable
(primary) memory for each process.

Method:

¢ Allow pages (or segments) from the virtual address space &idred in
secondary memory, as well as primary memory.

e Move pages (or segments) between secondary and primary ijemthat
they are in primary memory when they are needed.

CS350 Operating Systems Winter 2009

Virtual Memory 44

The Memory Hierarchy

BANDWIDTH (bytes/sec) SIZE (bytes)

L1 Cache 104

108
108 10°
secondary
106 memory 1012

(disk)

CS350 Operating Systems Winter 2009

Virtual Memory 45

Large Virtual Address Spaces

¢ Virtual memory allows for very large virtual address spaeesl very large
virtual address spaces require large page tables.

o example:2*® byte virtual address spacgKbyte (2'3 byte) pagess byte page
table entries means
M%w
ﬂww = 237 bytes per page table
e page tables for large address spaces may be very large, and
— they must be in memory, and

— they must be physically contiguous

e some solutions:
— multi-level page tables - page the page tables

— inverted page tables

CS350 Operating Systems Winter 2009

Virtual Memory 46

Two-Level Paging

virtual address (v bits) - I
Ly---i
|
I
veges | pogew ot Cramers otiel
T 771
| I,
CIoID physical address (m bits)
L
— 1
~— m bits —> level 1 LIl
page table base page table Fl-o--
register ettt
Ly---)
P
r I - \,
,T TT T
level 2
page tables

CS350 Operating Systems Winter 2009

Virtual Memory a7

Inverted Page Tables

e A normal page table maps virtual pages to physical framesnyerted page
table maps physical frames to virtual pages.

e Other key differences between normal and inverted pagegabl
— there is only one inverted page table, not one table per psoce
— entries in an inverted page table must include a processfieen

e An inverted page table only specifies the location of virpeges that are

located in memory. Some other mechanism (e.g., regular faédgs) must be
used to locate pages that are not in memory.

CS350 Operating Systems Winter 2009

Virtual Memory 48

Paging Policies

When to Page?:
Demand pagindprings pages into memory when they are used. Alternatively,
the OS can attempt to guess which pages will be usedpeaidtchthem.

What to Replace?:
Unless there are unused frames, one page must be replacatfopage that
is loaded into memory. Aeplacement policgpecifies how to determine
which page to replace.

Similar issues arise if (pure) segmentation is used, oryutiit of
data transfer is segments rather than pages. Since segmaynts
vary in size, segmentation also requirgg@aement policywhich
specifies where, in memory, a newly-fetched segment shaaild b
placed.

CS350 Operating Systems Winter 2009

Virtual Memory 49

Global vs. Local Page Replacement

e When the system’s page reference string is generated bythremeone
process, should the replacement policy take this into at®ou

Global Policy: A global policy is applied to all in-memory pages, regardles
of the process to which each one “belongs”. A page requestgudeess
X may replace a page that belongs another process, Y.

Local Policy: Under a local policy, the available frames are allocated to
processes according to some memory allocation policy. Roement
policy is then applied separately to each process’s akkocgpace. A page
requested by process X replaces another page that “belomgsdcess X.

CS350 Operating Systems Winter 2009

Virtual Memory 50

Paging Mechanism
e A valid bit (V') in each page table entry is used to track which pages are in
(primary) memory, and which are not.
V' = 1: valid entry which can be used for translation
V = 0: invalid entry. If the MMU encounters an invalid page tablérgnt
raises gpage faultexception.
e To handle a page fault exception, the operating system must:

— Determine which page table entry caused the exception.{B/H1, and
in real MIPS processors, MMU puts the offending virtual adrinto a
register on the CPO co-processor (register 8/&0dr/BadVaddr). The
kernel can read that register.

— Ensure that that page is brought into memory.
On return from the exception handler, the instruction teatiited in the page
fault will be retried.

¢ If (pure) segmentation is being used, there will a valid bhigach segment
table entry to indicate whether the segment is in memory.

CS350 Operating Systems Winter 2009

Virtual Memory

51

A Simple Replacement Policy: FIFO

¢ the FIFO policy: replace the page that has been in memontigekt

¢ athree-frame example:

Num 21314156 |7 9110 11| 12
Refs blcl|d|a|b]|e b| c d e
Frame 1 alal|d|d|d]|e e|l e| e | e
Frame 2 blb|blalal|a al c c c
Frame 3 clclc|b|b b| b d d
Fault ? X | X | X|X|X]|X X X
CS350 Operating Systems Winter 2009
Virtual Memory 52

Optimal Page Replacement

e There is an optimal page replacement policy for demand gagin

e The OPT policy: replace the page that will not be referenoedhfe longest

time.

Num 2134|567 9110 11| 12

Refs blc|d|a|b]|e b| c | d e
Frame 1 alalalalala al c c c
Frame 2 bl|b|b|b|b|b b| b | d d
Frame 3 cld|d|d]|e e| e e e

Fault ? X | X | X X X X
e OPT requires knowledge of the future.
CS350 Operating Systems Winter 2009

Virtual Memory 53

Other Replacement Policies

e FIFO is simple, but it does not consider:
Frequency of Use: how often a page has been used?
Recency of Use:when was a page last used?
Cleanliness: has the page been changed while it is in memory?

e Theprinciple of localitysuggests that usage ought to be considered in a
replacement decision.

¢ Cleanliness may be worth considering for performance reaso

CS350 Operating Systems Winter 2009

Virtual Memory 54

Locality

e Locality is a property of the page reference string. In otherds, it is a
property of programs themselves.

e Temporal localitysays that pages that have been used recently are likely to be
used again.

e Spatial localitysays that pages “close” to those that have been used arg likel
to be used next.

In practice, page reference strings exhibit strong logaiithy?

CS350 Operating Systems Winter 2009

Virtual Memory 55

Frequency-based Page Replacement

e Another approach to page replacement is to count refereageges. The
counts can form the basis of a page replacement decision.

e Example: LFU (Least Frequently Used)
Replace the page with the smallest reference count.

e Any frequency-based policy requires a reference countiaghanism, e.g.,
MMU increments a counter each time an in-memory page iseated.
e Pure frequency-based policies have several potentialldreks:

— Old references are never forgotten. This can be addressperimdically
reducing the reference count of every in-memory page.

— Freshly loaded pages have small reference counts and akg\iktims -
ignores temporal locality.

CS350 Operating Systems Winter 2009

Virtual Memory 56

Least Recently Used (LRU) Page Replacement

e LRU is based on the principle of temporal locality: repldoe page that has
not been used for the longest time

e To implement LRU, it is necessary to track each page’s rgcefuase. For
example: maintain a list of in-memory pages, and move a pateetfront of
the list when it is used.

e Although LRU and variants have many applications, LRU igwoftonsidered
to be impractical for use as a replacement policy in virtuahmry systems.
Why?

CS350 Operating Systems Winter 2009

Virtual Memory 57

Least Recently Used: LRU

e the same three-frame example:

Num|1/2|3|4|5|6|7|8|9]|10]| 11| 12
Refs|a|b|c|d|a|b|eja|lb| c|d e
Framel/ a|a|a|d|d|d|e|le|le| c c (o
Frame 2 b|b|b|lalalala|a|] a| d d
Frame 3 clclc|b|b|b|b| Db b e
Fault?| x | x | x | x| x| x| X X X X
CS350 Operating Systems Winter 2009
Virtual Memory 58
The “Use” Bit

e A use bit(or reference bitis a bit found in each PTE entry that:

— is set by the MMU each time the page is used, i.e., each timsIMg
translates a virtual address on that page

— can be read and modified by the operating system
— operating system copies use information into page table

e The use bit provides a small amount of efficiently-maintaleaisage
information that can be exploited by a page replacementiéhgo.

Entries in the MIPS TLB do not include a use bit.

CS350 Operating Systems Winter 2009

Virtual Memory 59

What if the MMU Does Not Provide a “Use” Bit?

¢ the kernel can emulate the “use” bit, at the cost of extra gkwes

1. When a page is loaded into memory, mark itraslid (even though it as
been loaded) and set its simulated “use” bit to false.

2. If a program attempts to access the page, an exceptionaeilr.

3. Inits exception handler, the OS sets the page’s simufata! bit to
“true” and marks the pagealid so that further accesses do not cause
exceptions.
e This technique requires that the OS maintain extra bitsfofination for each
page:
1. the simulated “use” bit

2. an “in memory” bit to indicate whether the page is in memory

CS350 Operating Systems Winter 2009

Virtual Memory 60

The Clock Replacement Algorithm

e The clock algorithm (also known as “second chance”) is orth@kimplest
algorithms that exploits the use bit.

e Clock is identical to FIFO, except that a page is “skippedtsfuse bit is set.

e The clock algorithm can be visualized as a victim pointet dyales through
the page frames. The pointer moves whenever a replacemestessary:

while use bit of victimis set

clear use bit of victim

victim= (victim+ 1) % num franes
choose victimfor replacenent
victim= (victim+ 1) % num franes

CS350 Operating Systems Winter 2009

Virtual Memory 61

Page Cleanliness: the “Modified” Bit

e A page ismodified(sometimes called dirty) if it has been changed since it was
loaded into memory.

e A modified page is more costly to replace than a clean pagey®yVvh

e The MMU identifies modified pages by settingredified bitin the PTE when
the contents of the page change.

e Operating system clears the modified bit when it cleans the pa

e The modified bit potentially has two roles:
— Indicates which pages need to be cleaned.

— Can be used to influence the replacement policy.

MIPS TLB entries do not include a modified bit.

CS350 Operating Systems Winter 2009

Virtual Memory 62

What if the MMU Does Not Provide a “Modified” Bit?

e Can emulate it in similar fashion to the “use” bit

1. When a page is loaded into memory, mark iteesd-only(even if it is
actually writeable) and set its simulated “modified” bit &dsie.

2. If a program attempts to modify the page, a protection gxae will
occur.

3. Inits exception handler, the OS sets the page’s simutatedified” bit to
“true” and marks the page as writeable, if it is supposed ta iveiteable
page.

e This technique requires that the OS maintain two extra Ilbitsformation for
each page:
1. the simulated “modified” bit

2. an “writeable” bit to indicate whether the page is suppdsebe writeable

CS350 Operating Systems Winter 2009

Virtual Memory 63

Enhanced Second Chance Replacement Algorithm

¢ Classify pages according to their use and modified bits:
(0,0): not recently used, clean.
(0,1): not recently used, modified.
(1,0): recently used, clean
(1,1): recently used, modified
e Algorithm:

1. Sweep once looking for (0,0) page. Don’t clear use bitdenbbking.

2. If none found, look for (0,0) or (0,1) page, this time clegr‘use” bits
while looking.

CS350 Operating Systems Winter 2009

Virtual Memory 64

Page Cleaning

¢ A modified page must be cleaned before it can be replacedyaeechanges
on that page will be lost.

e Cleaninga page means copying the page to secondary storage.
e Cleaning is distinct from replacement.

e Page cleaning may tsynchronousr asynchronous

synchronous cleaning: happens at the time the page is replaced, during page
fault handling. Page is first cleaned by copying it to secondtorage.
Then a new page is brought in to replace it.
asynchronous cleaning:happens before a page is replaced, so that page fault
handling can be faster.
— asynchronous cleaning may be implemented by dedicateplaQ&
cleaning threadshat sweep through the in-memory pages cleaning
modified pages that they encounter.

CS350 Operating Systems Winter 2009

Virtual Memory 65

Belady’s Anomaly

e FIFO replacement, 4 frames

Num|1|2|3[4|5/6|7|8|9]10|11] 12
Refs|a|b|jc|d|a|b|lela|b|c | d]| e
Framell a|a|a|la|a|a|e|e|le|l e | d]|d
Frame 2 b|b|b|b|b|bjalal| a| a]| e
Frame 3 c|lc|clclic|lc|b|b|b|b
Frame 4 dfd{d|d|d|d| c | c|cC
Fault? | x | x | x | X X | X[X]| X | X | X

e FIFO example on Slide 51 with same reference string had 3efsaand only 9
faults.

More memory does not necessarily mean fewer page faults.

CS350 Operating Systems Winter 2009

Virtual Memory 66

Stack Policies

e Let B(m,t) represent the set of pages in a memory of sizat timet under
some given replacement policy, for some given referenaagstr

e Areplacement policy is calledstack policyif, for all reference strings, ath
and allt:

B(m,t) € B(m+1,t)

¢ If a replacement algorithm imposes a total order, indepenofememory size,
on the pages and it replaces the largest (or smallest) pagedaing to that
order, then it satisfies the definition of a stack policy.

e Examples: LRU is a stack algorithm. FIFO and CLOCK are natksta
algorithms. (Why?)

Stack algorithms do not suffer from Belady’s anomaly.

CS350 Operating Systems Winter 2009

Virtual Memory 67

Prefetching

e Prefetching means moving virtual pages into memory befoeg are needed,
i.e., before a page fault results.

e The goal of prefetching igtency hiding do the work of bringing a page into
memory in advance, not while a process is waiting.

e To prefetch, the operating system must guess which pagekenieeded.

e Hazards of prefetching:

— guessing wrong means the work that was done to prefetch geevpas
wasted

— guessing wrong means that some other potentially usefd bag been
replaced by a page that is not used

e most common form of prefetching is simple sequential pobiieq: if a
process uses page prefetch page + 1.

e sequential prefetching exploits spatial locality of refere

CS350 Operating Systems Winter 2009

Virtual Memory 68

Page Size

the virtual memory page size must be understood by both ttreekand the
MMU

some MMUSs have support a configurable page size

advantages of larger pages
— smaller page tables

— largerTLB footprint

— more efficient I/O

disadvantages of larger pages
— greater internal fragmentation

— increased chance of paging in unnecessary data

0S/161 on the MIPS uses a 4KB virtual memory page size.

CS350 Operating Systems Winter 2009

Virtual Memory 69

How Much Physical Memory Does a Process Need?

¢ Principle of locality suggests that some portions of thecpss’s virtual
address space are more likely to be referenced than others.

¢ A refinement of this principle is theorking set modedf process reference
behaviour.

e According to the working set model, at any given time soméipoiof a
program’s address space will be heavily used and the remamitl not be.
The heavily used portion of the address space is calleditinking setof the
process.

e The working set of a process may change over time.

e Theresident sebf a process is the set of pages that are located in memory.

According to the working set model, if a process’s residenirs
cludes its working set, it will rarely page fault.

CS350 Operating Systems Winter 2009

Virtual Memory 70

Resident Set Sizes (Example)

PID VSZ RSS COMVAND

805 13940 5956 /usr/bi n/ gnone-session
831 2620 848 /usr/bin/ssh-agent

834 7936 5832 /usr/lib/gconf2/gconfd-2 11
838 6964 2292 gnone-snproxy

840 14720 5008 gnone-settings-daenon
848 8412 3888 sawfish

851 34980 7544 nautil us

853 19804 14208 gnome- panel

857 9656 2672 gpilotd

867 4608 1252 gnone- name-service

CS350 Operating Systems Winter 2009

Virtual Memory 71

Refining the Working Set Model

e DefineWW S(t, A) to be the set of pages referenced by a given process during
the time intervalt — A, t). WS(t, A) is the working set of the process at
timet.

e Define|WS(t, A)| to be the size of¥ S(¢, A), i.e., the number ofiistinct
pages referenced by the process.

e If the operating system could tradk S(¢, A), it could:

— use|WWS(t, A)| to determine the number of frames to allocate to the
process under a local page replacement policy
— useW S(t, A) directly to implement a working-set based page

replacement policy: any page that is no longer in the workeigs a
candidate for replacement

CS350 Operating Systems Winter 2009

Virtual Memory 72

Page Fault Frequency

e A more direct way to allocate memory to processes is to meahkeirpage
fault frequencies the number of page faults they generate per unit time.

e If a process’s page fault frequency is too high, it needs mmmory. Ifitis
low, it may be able to surrender memory.

e The working set model suggests that a page fault frequemtyspbuld have a
sharp “knee”.

CS350 Operating Systems Winter 2009

Virtual Memory 73

A Page Fault Frequency Plot

high
page fault frequency curve
process \\
page fault
frequency
thresholds
low
few many
frames allocated to process
CS350 Operating Systems Winter 2009
Virtual Memory 74

Thrashing and Load Control

e What is a good multiprogramming level?
— If too low: resources are idle
— If too high: too few resources per process
e A system that is spending too much time paging is said tthitzshing
Thrashing occurs when there are too many processes competithe
available memory.
e Thrashing can be cured by load shedding, e.g.,
— Killing processes (not nice)

— Suspending answapping ouprocesses (nicer)

CS350 Operating Systems Winter 2009

Virtual Memory 75

Swapping Out Processes

e Swapping a process out means removing all of its pages fromamge or
marking them so that they will be removed by the normal pag&oement
process. Suspending a process ensures that it is not rennhlbé it is
swapped out.

e Which process(es) to suspend?

— low priority processes
— blocked processes
— large processes (lots of space freed) or small processssi(éareload)

e There must also be a policy for making suspended processey when
system load has decreased.

CS350 Operating Systems Winter 2009

