Virtual Memory 1

Virtual and Physical Addresses

e Physical addresses are provided directly by the machine.
— one physical address space per machine
— the size of a physical address determines the maximum anmbunt
addressable physical memory
e Virtual addresses (or logical addresses) are addressesg@idy the OS to
processes.
— one virtual address spaper process

e Programs use virtual addresses. As a program runs, the aisrdwith help
from the operating system) converts each virtual addreagpto/sical address.

e the conversion of a virtual address to a physical addresslexdaddress
translation

On the MIPS, virtual addresses and physical addresseR dgs
long. This limits the size of virtual and physical addresacss.

CS350 Operating Systems Winter 2009

Virtual Memory 2

What is in a Virtual Address Space?

0x00400000 — 0x00401b30
text (program code) and read—only data

/

growth

1 S A
0x10000000 — 0x101200h0 stack
data high end of stack: Ox7fffffff

0x00000000 i

This diagram illustrates the layout of the virtual addrgsace for
the OS/161 test applicatidrest bi n/ sort

CS350 Operating Systems Winter 2009

Virtual Memory 3

Simple Address Translation: Dynamic Relocation

e hardware provides memory management umvhich includes aelocation
register

e atrun-time, the contents of the relocation register are adoleach virtual
address to determine the corresponding physical address

e the OS maintains a separate relocation register value tr @acess, and
ensures that relocation register is reset on each contesw

e Properties
— OS must allocate/deallocate variable-sized chunks ofipalyshemory

— potential forexternal fragmentationf physical memory: wasted,
unallocated space

— each virtual address space corresponds to a contiguous oapdysical
addresses

CS350 Operating Systems Winter 2009

Virtual Memory

Dynamic Relocation: Address Space Diagram

Proc 1 virtual address space
0

max1

max2

Proc 2 T
virtual address space

physical memory
0

C + max2

CS350 Operating Systems

Winter 2009

Virtual Memory 5
Dynamic Relocation Mechanism
virtual address physical addres
-<—— y bits——> —~<— m bits—>
| | | |
A
-(+)
A
I
—~— m bits —>
relocation
register
CS350 Operating Systems Winter 2009

Virtual Memory 6

Address Translation: Paging

e Each virtual address space is divided into fixed-size choakedpages

e The physical address space is divided imgones Frame size matches page
size.

e OS maintains @age tabldor each process. Page table specifies the frame In
which each of the process’s pages is located.

e At runtime, MMU translates virtual addresses to physicaigishe page table
of the running process.

e Properties
— simple physical memory management

— potential forinternal fragmentatiorof physical memory: wasted, allocated
space

— virtual address space need not be physically contiguouBysipal space
after translation.

CS350 Operating Systems Winter 2009

Virtual Memory 7

Address Space Diagram for Paging

Proc 1 virtual address space physical memory

0 0
max1

0
max2

Proc 2
virtual address space
m
2 -1

CS350 Operating Systems Winter 2009

Virtual Memory

virtual address

~<—— y bits ——>

page #

offset

Paging Mechanism

physical address

—<— m bits —>

frame #

offset

A

T

~<— m bits —>

page table base

register

protection and
other flags

frame #

page table

CS350

Operating Systems

Winter 2009

Virtual Memory

Memory Protection

e during address translation, the MMU checks to ensure tlegbtbcess uses
only valid virtual addresses

— typically, each PTE contains\alid bit which indicates whether that PTE
contains a valid page mapping

— the MMU may also check that the virtual page number does max@
PTE beyond the end of the page table

e the MMU may also enforce other protection rules

— typically, aread-onlybit each PTE may be set to specify that the
corresponding page may not be modified by the process

e If a process attempts to violated these protection rulesMiIU raises an
exception, which is handled by the kernel

The kernel controls which pages are valid and which are prede
by setting the the contents of PTEs and/or MMU registers.

CS350 Operating Systems Winter 2009

Virtual Memory

10

Roles of the Operating System and the MMU (Summary)

e Operating system:
— save/restore MMU state on context switches
— create and manage page tables
— manage (allocate/deallocate) physical memory

— handle exceptions raised by the MMU
e MMU (hardware):

— translate virtual addresses to physical addresses

— check for and raise exceptions when necessary

CS350 Operating Systems

Winter 2009

Virtual Memory 11

Remaining Issues

translation speed: Address translation happens very frequently. (How
frequently?) It must be fast.

sparseness:Many programs will only need a small part of the availablecgfar
their code and data.

the kernel. Each process has a virtual address space in which to run. &dbat
the kernel? In which address space does it run?

CS350 Operating Systems Winter 2009

Virtual Memory 12

Speed of Address Translation

e EXxecution of each machine instruction may involve one, twmore memory
operations

— one to fetch instruction
— one or more for instruction operands
e Address translation through a page table adds one extra ngeperation

(for page table entry lookup) for each memory operationgraréd during
Instruction execution

— Simple address translation through a page table can cuatisin
execution rate in half.

— More complex translation schemes (e.g., multi-level pgpare even
more expensive.

e Solution: include a Translation Lookaside Buffer (TLB) hetMMU

— TLB is a fast, fully associative address translation cache

— TLB hit avoids page table lookup

CS350 Operating Systems Winter 2009

Virtual Memory 13

TLB

e Each entry in the TLB contains a (page number, frame numlagr) p

¢ |f address translation can be accomplished using a TLB esmtoess to the
page table is avoided.

e Otherwise, translate through the page table, and add tolingstranslation
to the TLB, replacing an existing entry if necessary. Imeadware controlled
TLB, this is done by the MMU. In goftware controlled' LB, it is done by the
kernel.

e TLB lookup is much faster than a memory access. TLB is an sesoe
memory - page numbers of all entries are checked simultahetar a match.
However, the TLB is typically smalllQ? to 102 entries).

¢ If the MMU cannot distinguish TLB entries from different agds spaces,
then the kernel must clear or invalidate the TLB. (Why?)

CS350 Operating Systems Winter 2009

Virtual Memory 14

The MIPS R3000 TLB

e The MIPS has a software-controlled TLB than can hold 64 estri

e Each TLB entry includes a virtual page number, a physicah&aumber, an
address space identifier (not used by OS/161), and sevagsal(fialid,
read-only)

e OS/161 provides low-level functions for managing the TLB:

TLB _Write: modify a specified TLB entry

TLB _Random: modify a random TLB entry
TLB _Read: read a specified TLB entry

TLB _Probe: look for a page number in the TLB

e |f the MMU cannot translate a virtual address using the TLEises an
exception, which must be handled by 0OS/161

Seekern/arch/ m ps/include/tlb.h

CS350 Operating Systems Winter 2009

Virtual Memory 15

Handling Sparse Address Spaces: Sparse Page Tables

000000000000000000000

0x10000000 - 0x101200b0 Stack
eeeeeeeeee

e Consider the page table foest bi n/ sort, assuming a 4 Kbyte page size:

— need2!® page table entries (PTES) to cover the bottom half of theirt
address space.

— the text segment occupies 2 pages, the data segment oc28gieages,
and OS/161 sets the initial stack size to 12 pages

e The kernel will mark a PTE as invalid if its page is hot mapped.

e In the page table farest bi n/ sort, only 302 of 2'° PTEs will be valid.

An attempt by a process to access an invalid page causes thé MM
to generate an exception (known apage faul} which must be
handled by the operating system.

CS350 Operating Systems Winter 2009

Virtual Memory 16

Segmentation

e Often, programs (likesor t) need several virtual address segments, e.g, for
code, data, and stack.

e One way to support this is to tusegmentto first-class citizens, understood
by the application and directly supported by the OS and thelMM

e Instead of providing a single virtual address space to eamtegs, the OS
provides multiple virtual segments. Each segment is likepagsate virtual
address space, with addresses that start at zero.

e With segmentation, a process virtual address can be thadigisthaving two
parts:

(segment ID, address within segment)

e Each segment:

— can grow (or shrink) independently of the other segment$o some
maximum size

— has its own attributes, e.g, read-only protection

CS350 Operating Systems Winter 2009

Virtual Memory

17

Segmented Address Space Diagram

Proc 1

0

segment 0

0
segment 1 -

0
segment 2 .

Proc 2

segment 0

physical memory

0

CS350

Operating Systems

Winter 2009

Virtual Memory 18

Mechanism for Translating Segmented Addresses

physical address

~<— m bhits —>

virtual address
—~~—— y bhits—>
seg# | offset :\+

segment table
—————————————>T

—~<— m bits —>

segment table base
register

-

length \ start

protection

This translation mechanism requires physically contigualloca-
tion of segments.

CS350 Operating Systems Winter 2009

Virtual Memory 19

Combining Segmentation and Paging

Proc 1 physical memory

0 0

segment 0

0
segment 1 -

0
segment 2 .

Proc 2

segment 0

CS350 Operating Systems Winter 2009

Virtual Memory 20

Combining Segmentation and Paging: Translation Mechanism

virtual address physical address
—-< VvV bits —> —~<— m bits —>
seg # page # offset frame # | offset
A A
segment table page table
e —»T |- - - >

Y

L e e e e e e - —

~<— m hits —>

segment table base
register

page table
length

protection

CS350 Operating Systems Winter 2009

Virtual Memory 21

Shared Virtual Memory

¢ Vvirtual memory sharing allows parts of two or more addresgsp to overlap

e shared virtual memory is:

— a way to use physical memory more efficiently, e.g., one cd@y o
program can be shared by several processes

— a mechanism for interprocess communication

e sharing is accomplished by mapping virtual addresses few@ral processes
to the same physical address

e unit of sharing can be a page or a segment

CS350 Operating Systems Winter 2009

Virtual Memory 22

Shared Pages Diagram

Proc 1 virtual address space physical memory

0 0
max1

0
max2

Proc 2
virtual address space
m
2 -1

CS350 Operating Systems Winter 2009

Virtual Memory

23

segment 0
(shared)

segment 1

segment 2

segment 0

segment 1
(shared)

Shared Segments Diagram

Proc 1 physical memory
| . |
NN
0

. >

Proc 2
m
2

-1

CS350

Operating Systems

Winter 2009

Virtual Memory 24

0OS/161 Address Spaces: dumbvm

e 0OS/161 starts with a very simple virtual memory implemaatat

e Vvirtual address spaces are describe@bgr space objects, which record
the mappings from virtual to physical addresses

struct addrspace {

#i f OPT_DUVBVM
vaddr t as _vbasel; /* base virtual address of code segnment =/
paddr t as_pbasel; /* base physical address of code segnent =/
Size t as _npagesl; /* size (in pages) of code segnent =/
vaddr t as vbase2; /* base virtual address of data segnent =*/
paddr _t as pbase2; /=* base physical address of data segnent =/
Size t as_npages2; /* size (in pages) of data segnent =/
paddr t as_stackpbase; /* base physical address of stack =/

#el se
[+ Put stuff here for your VM system */

#endi f

i

This amounts to a slightly generalized version of simpleaihyit
relocation, with three bases rather than one.

CS350 Operating Systems Winter 2009

Virtual Memory 25

Address Translation Underdunbvm

e the MIPS MMU tries to translate each virtual address usimeggettitries in the
TLB

e |f there is no valid entry for the page the MMU is trying to tedatte, the
MMU generates a page fault (called anidress exceptign

e Thevmf aul t function (se&ker n/ arch/ m ps/ m ps/ dunbvm c)
handles this exception for the OS/161 kernel. It uses in&bion from the
current processaddr space to construct and load a TLB entry for the page.

e On return from exception, the MIPS retries the instructiwat caused the
page fault. This time, it may succeed.

vmf aul t is not very sophisticated. If the TLB fills up, OS/161
will crash!

CS350 Operating Systems Winter 2009

Virtual Memory 26

An Address Space for the Kernel

e Each process has its own address space. What about the’kernel

e two possibilities

Kernel in physical space: disable address translation in privileged system
execution mode, enable it in unprivileged mode

Kernel in separate virtual address space:need a way to change address
translation (e.g., switch page tables) when moving betvpesiieged and
unprivileged code

e OS/161, Linux, and other operating systems use a third apprdhe kernel
IS mapped into a portion of the virtual address spacevefy process

e memory protection mechanism is used to isolate the keroel &ipplications

e one advantage of this approach: application virtual acdgi®ée.g., system call
parameters) are easy for the kernel to use

CS350 Operating Systems Winter 2009

Virtual Memory 27

The Kernel in Process’ Address Spaces

Kernel
(shared, protected)

Process 1 Process 2
Address Space Address Spa

Attempts to access kernel code/data in user mode resultnmomye
protection exceptions, not invalid address exceptions.

CS350 Operating Systems Winter 2009

Virtual Memory 28

Address Translation on the MIPS R3000

2 GB 2 GB
- user space > kernel space ——
kuseg ksegO || ksegl kseg2
0.5GB || 0.5GB 1 GB
A A LA A)A A
0xc0000000
TLB mapped 0xa0000000
0x00000000 0x80000000 OxFfffffff
unmapped, cached unmapped, uncached

In OS/161, user programs live in kuseg, kernel code and tlaiz: s
tures live in ksegO, devices are accessed through ksegksagd
IS not used.

CS350 Operating Systems Winter 2009

Virtual Memory 29

Loading a Program into an Address Space

e When the kernel creates a process to run a particular programst create
an address space for the process, and load the program’ssaddkata into
that address space

e A program’s code and data is described inexecutable filewhich is created
when the program is compiled and linked

e 0S/161 (and other operating systems) expect executaldddilee in ELF
(Executable and inking Format) format

e the OS/16Jexecv system call, which re-initializes the address space of a
process

#i ncl ude <uni std. h>
| nt
execv(const char *program char =**args)

e Thepr ogr amparameter of thexecv system call should be the name of the
ELF executable file for the program that is to be loaded inéoattidress space.

CS350 Operating Systems Winter 2009

Virtual Memory 30

ELF Files

e ELF files contain address space segment descriptions, \@hechseful to the
kernel when it is loading a new address space

e the ELF file identifies the (virtual) address of the prografin& instruction

e the ELF file also contains lots of other information (e.gctsa descriptors,
symbol tables) that is useful to compilers, linkers, delauggloaders and
other tools used to build programs

CS350 Operating Systems Winter 2009

Virtual Memory 31

Address Space Segments in ELF Files

e Each ELF segment describes a contiguous region of the vatlthess space.
e For each segment, the ELF file includes a segnmeageand a header, which
describes:
— the virtual address of the start of the segment
— the length of the segment in the virtual address space
— the location of the start of the image in the ELF file
— the length of the image in the ELF file

e the image is an exact copy of the binary data that should lmetbanto the
specified portion of the virtual address space

e the image may be smaller than the address space segmenicmaaie the
rest of the address space segment is expected to be zedo-fille

To initialize an address space, the kernel copies images fine
ELF file to the specifed portions of the virtual address space

CS350 Operating Systems Winter 2009

Virtual Memory 32

ELF Files and OS/161

e OS/161'sdunmbvmimplementation assumes that an ELF file contains two
segments:

— atext segmentontaining the program code and any read-only data

— adata segmentontaining any other global program data
e the ELF file does not describe the stack (why not?)

e dunbvmcreates &tack segmerfor each process. Itis 12 pages long, ending
at virtual addresOx7f fffff f

Look at kern/ user prog/ | oadel f.c to see how 0S/161
loads segments from ELF files

CS350 Operating Systems Winter 2009

Virtual Memory 33

ELF Sections and Segments

e Inthe ELF file, a program’s code and data are grouped togeattesections
based on their properties. Some sections:

text: program code

rodata: read-only global data

.data: initialized global data

bss: uninitialized global data (Block Started by Symbol)

.sbss: small uninitialized global data

e not all of these sections are present in every ELF file

e normally
— the. t ext and. r odat a sections together form the text segment

— the. dat a, . bss and. sbss sections together form the data segement

e space folocal program variables is allocated on the stack when the program
runs

CS350 Operating Systems Winter 2009

Virtual Memory 34

The segnent s. ¢ Example Program (1 of 2)

#i ncl ude <uni std. h>

#define N (200)

| nt X = Oxdeadbeef;

I nt yl1;

I nt y2;

| nt y3;

I nt array[4096];

char const =*str = "Hello World\n";
const int z = Oxabcddcba;

struct exanmple {
| Nt ypos;
| Nt Xpos;

i

CS350 Operating Systems Winter 2009

Virtual Memory

35

The segnent s. ¢ Example Program (2 of 2)

| nt
mai n()

{

I nt count = O;

const int value = 1;
yl = N

y2 = 2

count = x + yl1;

y2 =z + y2 + val ue;

r eboot (RB_ PONERCFF) ;

return O; /* avoid conpiler warnings */

CS350

Operating Systems

Winter 2009

Virtual Memory

36

ELF Sections for the Example Program

Secti on Headers:

[Nr]
[O]
1]
2]
3]
4]
5]
6]
/]

1 ———

Nane

.reginfo
.t ext

. rodat a
. dat a

. Sbss

. bss

. conment

Type Addr

NULL 00000000
M PS REG NFO 00400094
PROGBI TS 004000b0
PROGBI TS 004002b0
PROGBI TS 10000000
NCBI TS 10000010
NCBI TS 10000030
PROGBI TS 00000000

O f

000000
000094
0000b0
0002b0
001000
001010
00101c
00101c

Si ze

000000
000018
000200
000020
000010
000014
004000
000036

ES Flg
00
18
00
00
00
00
00
00

sEs.z2,

ﬁiégs: W(wite), A (alloc), X (execute), p (processor specific)

Sl ze = nunber of bytes (e.g., .text is 0x200 = 512 bytes
OFf = offset into the ELF file
Addr = virtual address

The cs350-r eadel f program can be used to inspect OS/161 MIPS
ELF files:cs350-readel f -a segnents

CS350 Operating Systems Winter 2009

Virtual Memory 37

ELF Segments for the Example Program

Program Headers:

Type O f set Vi rt Addr PhysAddr FileSiz MenSiz Flg Align
REG NFO 0x000094 0x00400094 0x00400094 0x00018 0x00018 R 0x4
LOAD 0x000000 0x00400000 0x00400000 0x002d0 0x002d0 R E 0x1000
LOAD 0x001000 0x10000000 0x10000000 0x00010 0x04030 RW 0x1000

e segment info, like section info, can be inspected using®®50- r eadel f
program

e the REGINFO section is not used
e the first LOAD segment includes the .text and .rodata sestion

e the second LOAD segment includes .data, .sbss, and .bss

CS350 Operating Systems Winter 2009

Virtual Memory 38

Contents of the Example Program’s. t ext Section

Contents of section .text:
4000b0 3c1cl1001 279c8000 3cogffff 3508fff8 <...'...<...5. ..

Decodi ng 3cl1lcl1l001 to determ ne instruction

0x3c1lcl001 = binary 111100000111000001000000000001
0011 1100 0001 1100 0001 0000 0000 0001

instr | rs | rt | | mmedi at e

6 bits | 5 bits| 5 bits] 16 bits

001111 | 00000 | 11100 | 0001 0OOOO 0000 0001

LU | O | reg 28| 0x1001

LU | unused| reg 28| 0x1001

Load unsigned immediate into rt (register target)
lui gp, 0x1001

The ¢s350- obj dunp program can be used to inspect OS/161 MIPS
ELF file section contentscs350- obj dunp -s segnents

CS350 Operating Systems Winter 2009

Virtual Memory 39

Contents of the Example Program’s. r odat a Section

Contents of section .rodata:
4002b0 48656¢c6¢c 6f 20576f 726c640a 00000000 Hello World.
4002c0 abcddcba 00000000 00000000 00000000

0x48 = "H O0x65 = 'e' 0Ox0a ='\n" 0x00 = '\0O

Align next int to 4 byte boundary

const int z = Oxabcddcba

|If conpiler doesn't prevent z frombeing witten,

then the hardware coul d

Size = 0x20 = 32 bytes "Hello World\n\0" = 13 + 3 padding = 16
+ const int z =4 = 20

Then align to the next 16 byte boundry at 32 bytes.

The. r odat a section contains the “Hello World” string literal and the
constant integer variable.

CS350 Operating Systems Winter 2009

Virtual Memory 40

Contents of the Example Program’s. dat a Section

Contents of section .data:
10000000 deadbeef 004002b0 00000000 00000000 @.........

Sl ze = 0x10 bytes = 16 bytes

int x = deadbeef (4 bytes)

char const *str = "Hello World\n"; (4 bytes)
val ue stored in str = 0x004002b0.

NOTE: this is the address of the start

of the string literal in the .rodata section

The. dat a section contains the initialized global variabstsr andx.

CS350 Operating Systems Winter 2009

Virtual Memory 41

Contents of the Example Program’s. bss and. sbss Sections

10000010 A __bss start
10000010 A edata
10000010 A fbss

10000010 S y3 ## S indicates sbss section
10000014 S y2

10000018 S y1

1000001c S errno

10000020 S __argv

10000030 B array ## B indicates bss section
10004030 A _end

Theyl, y2, andy3 variables are in the sbss section. The
arr ay variable is in the bss section. There are no values for
these variables in the ELF file, as they are uninitialized.e Th
cs350- nmprogram can be used to inspect symbols defined in
ELF files:cs350-nm - b segnents

CS350 Operating Systems Winter 2009

Virtual Memory 42

System Call Interface for Virtual Memory Management

e much memory allocation is implicit, e.g.:
— allocation for address space of new process
— implicit stack growth on overflow
e OS may support explicit requests to grow/shrink addressesfag., Unix
br k system call.
e shared virtual memory (simplified Solaris example):
Create: shm d = shnget (key, si ze)
Attach: vaddr = shmat (shm d, vaddr)
Detach: shndt (vaddr)
Delete: shntt!| (shm d, | PC_.RM D)

CS350 Operating Systems Winter 2009

Virtual Memory 43

Exploiting Secondary Storage

Goals:

e Allow virtual address spaces that are larger than the phladdress space.

e Allow greater multiprogramming levels by using less of thraikable
(primary) memory for each process.

Method:

e Allow pages (or segments) from the virtual address space &idred in
secondary memory, as well as primary memory.

e Move pages (or segments) between secondary and primary imemthat
they are in primary memory when they are needed.

CS350 Operating Systems Winter 2009

Virtual Memory 44
The Memory Hierarchy
BANDWIDTH (bytes/sec) SIZE (bytes)
104
10°
3 primary 9
10 memory 10
AN
secondary
10° memory 1012
(disk)
CS350 Operating Systems Winter 2009

Virtual Memory 45

Large Virtual Address Spaces

¢ Virtual memory allows for very large virtual address spacesl very large
virtual address spaces require large page tables.

o example:2*® byte virtual address spacgKbyte 2!2 byte) pagest byte page
table entries means

248

ﬁf — 237 bytes per page table

e page tables for large address spaces may be very large, and
— they must be in memory, and

— they must be physically contiguous

e some solutions:
— multi-level page tables - page the page tables

— Inverted page tables

CS350 Operating Systems Winter 2009

Virtual Memory 46

Two-Level Paging

virtual address (v bits)

RS Y
page# | page# | offset - i S i frame # | offset
S A
IR physical address (m bits)
A A
Y Y
| I
page table base page table A—
register Pl
R
. ; . i
level 2
page tables

CS350 Operating Systems Winter 2009

Virtual Memory 47

Inverted Page Tables

e A normal page table maps virtual pages to physical frameanyarted page
table maps physical frames to virtual pages.

e Other key differences between normal and inverted pagegabl
— there is only one inverted page table, not one table per psoce
— entries in an inverted page table must include a processfiéen
e An inverted page table only specifies the location of virpedes that are

located in memory. Some other mechanism (e.g., regular addgs) must be
used to locate pages that are not in memory.

CS350 Operating Systems Winter 2009

Virtual Memory 48

Paging Policies

When to Page?:

Demand pagindprings pages into memory when they are used. Alternatively,
the OS can attempt to guess which pages will be usedpagidtchthem.

What to Replace?:

Unless there are unused frames, one page must be replacsatiopage that
IS loaded into memory. Aeplacement policgpecifies how to determine
which page to replace.

Similar issues arise if (pure) segmentation is used, orytht of
data transfer is segments rather than pages. Since segmaynts
vary in size, segmentation also requirgdacement policywhich

specifies where, in memory, a newly-fetched segment shaeild b
placed.

CS350 Operating Systems Winter 2009

Virtual Memory 49

Global vs. Local Page Replacement

e When the system’s page reference string is generated bythmmeone
process, should the replacement policy take this into a@ou

Global Policy: A global policy is applied to all in-memory pages, regardles
of the process to which each one “belongs”. A page request@iddeess
X may replace a page that belongs another process, Y.

Local Policy: Under a local policy, the available frames are allocated to
processes according to some memory allocation policy. Rcgment
policy is then applied separately to each process’s akacspace. A page
requested by process X replaces another page that “belomgsicess X.

CS350 Operating Systems Winter 2009

Virtual Memory 50

Paging Mechanism
e A validbit (V) in each page table entry is used to track which pages are in
(primary) memory, and which are not.
V = 1. valid entry which can be used for translation
V = 0: invalid entry. If the MMU encounters an invalid page tabléngnt
raises gage faultexception.
e To handle a page fault exception, the operating system must:

— Determine which page table entry caused the exception.{B/H1, and
In real MIPS processors, MMU puts the offending virtual addrinto a
register on the CPO co-processor (register &afdr/BadVaddr). The
kernel can read that register.

— Ensure that that page is brought into memory.
On return from the exception handler, the instruction teatited in the page
fault will be retried.

e If (pure) segmentation is being used, there will a valid bikach segment
table entry to indicate whether the segment is in memory.

CS350 Operating Systems Winter 2009

Virtual Memory

51

A Simple Replacement Policy: FIFO

e the FIFO policy: replace the page that has been in memonpotigekt

e athree-frame example:

Num | 1|2 |34 |5|6]|7 9110 11| 12
Refsia|b|c|d|a|b]|e bl c| d]| e
Framel/ a|a|la|d|d|d| e el e| e | e
Frame 2 bib|bjalala alc|c|c
Frame 3 cic|c|b]|b b| b | d]| d
Fault? | X | X | X [X | X | X | X X | X
CS350 Operating Systems Winter 2009

Virtual Memory

52

Optimal Page Replacement

e There is an optimal page replacement policy for demand pagin

e The OPT policy: replace the page that will not be referenoedhfe longest

time.

Num 21314|5|6]|7 9| 10| 11| 12

Refs blc|d|a|b]|e b| C d e
Frame 1 alalalalala al| Cc C C
Frame 2 b|{b|b|b|b|b b| b d d
Frame 3 cld|d|d]| e e| e e e

Fault ? X | X | X X X X
e OPT requires knowledge of the future.
CS350 Operating Systems Winter 2009

Virtual Memory 53

Other Replacement Policies

e FIFO is simple, but it does not consider:
Frequency of Use: how often a page has been used?
Recency of Use:when was a page last used?
Cleanliness: has the page been changed while it is in memory?

e Theprinciple of localitysuggests that usage ought to be considered in a
replacement decision.

e Cleanliness may be worth considering for performance reaso

CS350 Operating Systems Winter 2009

Virtual Memory 54

Locality

e Locality is a property of the page reference string. In otherds, it is a
property of programs themselves.

e Temporal localitysays that pages that have been used recently are likely to be
used again.

e Spatial localitysays that pages “close” to those that have been used ang likel
to be used next.

In practice, page reference strings exhibit strong logaiithy?

CS350 Operating Systems Winter 2009

Virtual Memory 55

Frequency-based Page Replacement

e Another approach to page replacement is to count refereéoqesyes. The
counts can form the basis of a page replacement decision.

e Example: LFU (Least Frequently Used)
Replace the page with the smallest reference count.

e Any frequency-based policy requires a reference countiagh@anism, e.g.,
MMU increments a counter each time an in-memory page iseated.
e Pure frequency-based policies have several potentialodreks.

— Old references are never forgotten. This can be addressperimdically
reducing the reference count of every in-memory page.

— Freshly loaded pages have small reference counts and alg\iktims -
ignores temporal locality.

CS350 Operating Systems Winter 2009

Virtual Memory 56

Least Recently Used (LRU) Page Replacement

e LRU is based on the principle of temporal locality: repldoe page that has
not been used for the longest time

e To implement LRU, it is necessary to track each page’s rgcehase. For
example: maintain a list of in-memory pages, and move a pateetfront of
the list when it is used.

e Although LRU and variants have many applications, LRU igoftonsidered
to be impractical for use as a replacement policy in virtuahmry systems.

Why?

CS350 Operating Systems Winter 2009

Virtual Memory

57

Least Recently Used: LRU

e the same three-frame example:

Num 2134|567 910 | 11| 12
Refs bjc|d|a|b|e bl c| d]| e
Frame 1 ala|d|d|d]|e e| c| Cc | cC
Frame 2 blb|ala]|a ala|d|d
Frame 3 cic|c|b]|b b| b | b | e
Fault ? X | X | X|X]|X]|X X | X | X
CS350 Operating Systems Winter 2009

Virtual Memory 58

The “Use” Bit

e A use bit(or reference bitis a bit found in each PTE entry that:

— Is set by the MMU each time the page is used, i.e., each timkIM¥g
translates a virtual address on that page

— can be read and modified by the operating system
— operating system copies use information into page table

e The use bit provides a small amount of efficiently-mainthlaaisage
Information that can be exploited by a page replacementisgo.

Entries in the MIPS TLB do not include a use bit.

CS350 Operating Systems Winter 2009

Virtual Memory 59

What if the MMU Does Not Provide a “Use” Bit?

e the kernel can emulate the “use” bit, at the cost of extra gxwes

1. When a page is loaded into memory, mark itraslid (even though it as
been loaded) and set its simulated “use” bit to false.

2. If a program attempts to access the page, an exceptionailir.

3. In its exception handler, the OS sets the page’s simufata bit to
“true” and marks the pagealid so that further accesses do not cause
exceptions.

e This technique requires that the OS maintain extra bitsfofimation for each
page:
1. the simulated “use” bit

2. an “in memory” bit to indicate whether the page is in memory

CS350 Operating Systems Winter 2009

Virtual Memory 60

The Clock Replacement Algorithm

e The clock algorithm (also known as “second chance”) is onb®simplest
algorithms that exploits the use bit.

e Clock is identical to FIFO, except that a page is “skippedtdfuse bit is set.

e The clock algorithm can be visualized as a victim pointet tyales through
the page frames. The pointer moves whenever a replacemeztessary:

while use bit of victimis set

clear use bit of victim

victim= (victim+ 1) % num franes
choose victimfor repl acenent
victim= (victim+ 1) % num franes

CS350 Operating Systems Winter 2009

Virtual Memory 61

Page Cleanliness: the “Modified” Bit

e A page ismodified(sometimes called dirty) if it has been changed since it was
loaded into memory.

e A modified page is more costly to replace than a clean pagey®Vh

e The MMU identifies modified pages by settingredified bitin the PTE when
the contents of the page change.

e Operating system clears the modified bit when it cleans tge pa

e The modified bit potentially has two roles:
— Indicates which pages need to be cleaned.

— Can be used to influence the replacement policy.

MIPS TLB entries do not include a modified bit.

CS350 Operating Systems Winter 2009

Virtual Memory 62

What if the MMU Does Not Provide a “Modified” Bit?

e Can emulate it in similar fashion to the “use” bit

1. When a page is loaded into memory, mark iteesd-only(even if it is
actually writeable) and set its simulated “modified” bit &bske.

2. If a program attempts to modify the page, a protection gxae will
occur.

3. Inits exception handler, the OS sets the page’s simufatedified” bit to
“true” and marks the page as writeable, if it is supposed ta Weiteable

page.
e This technigue requires that the OS maintain two extra lbiisformation for
each page:
1. the simulated “modified” bit

2. an “writeable” bit to indicate whether the page is supddsebe writeable

CS350 Operating Systems Winter 2009

Virtual Memory 63

Enhanced Second Chance Replacement Algorithm

e Classify pages according to their use and modified bits:
(0,0): not recently used, clean.
(0,1): not recently used, modified.
(1,0): recently used, clean

(1,1): recently used, modified

e Algorithm:
1. Sweep once looking for (0,0) page. Don't clear use bitdeanbbking.

2. If none found, look for (0,0) or (0,1) page, this time clagr‘use” bits
while looking.

CS350 Operating Systems Winter 2009

Virtual Memory 64

Page Cleaning

e A modified page must be cleaned before it can be replacedvwateechanges
on that page will be lost.

e Cleaninga page means copying the page to secondary storage.
e Cleaning is distinct from replacement.

e Page cleaning may ®y/nchronou®r asynchronous

synchronous cleaning: happens at the time the page is replaced, during page
fault handling. Page is first cleaned by copying it to secondtorage.
Then a new page is brought in to replace it.

asynchronous cleaning:happens before a page is replaced, so that page fault
handling can be faster.

— asynchronous cleaning may be implemented by dedicatepaQ&
cleaning threadshat sweep through the in-memory pages cleaning
modified pages that they encounter.

CS350 Operating Systems Winter 2009

Virtual Memory

65

Belady’s Anomaly

e FIFO replacement, 4 frames

Num|1|2|3|/4|5(6|7[8]9]10| 11 12
Refsia|b|c|d|a|bje|la|b| c | d]| e
Framel/ a|a|la|a|la|a|e|e|e| e | d]|d
Frame 2 bib|b|bjaja|] a| a]| e
Frame 3 c(c|clc|c|c|b|b|b|Db
Frame 4 d d|d|d|d|d| c | c]| cC
Fault? | x | X | X | X X | X[X] X | X | X

e FIFO example on Slide 51 with same reference string had 3dsaand only 9
faults.

More memory does not necessarily mean fewer page faults.

CS350

Operating Systems

Winter 2009

Virtual Memory 66

Stack Policies

e Let B(m,t) represent the set of pages in a memory of sizat timet under
some given replacement policy, for some given referenaagstr

e Areplacement policy is calledstack policyif, for all reference strings, ath
and allt:
B(m,t) C B(m+ 1,t)

e If a replacement algorithm imposes a total order, indepeinoiememory size,
on the pages and it replaces the largest (or smallest) pagedang to that
order, then it satisfies the definition of a stack policy.

e Examples: LRU is a stack algorithm. FIFO and CLOCK are natksta
algorithms. (Why?)

Stack algorithms do not suffer from Belady’s anomaly.

CS350 Operating Systems Winter 2009

Virtual Memory 67

Prefetching

Prefetching means moving virtual pages into memory befogg are needed,
l.e., before a page fault results.

The goal of prefetching imtency hiding do the work of bringing a page into
memory in advance, not while a process is waiting.

To prefetch, the operating system must guess which pagkekenneeded.

Hazards of prefetching:

— guessing wrong means the work that was done to prefetch teevpas
wasted

— guessing wrong means that some other potentially usefd pag been
replaced by a page that is not used

most common form of prefetching is simple sequential podiieq: if a
process uses page prefetch page + 1.

sequential prefetching exploits spatial locality of refere

CS350 Operating Systems Winter 2009

Virtual Memory 68

Page Size

e the virtual memory page size must be understood by both threekand the
MMU

e some MMUs have support a configurable page size

e advantages of larger pages
— smaller page tables
— largerTLB footprint

— more efficient I/O

e disadvantages of larger pages
— greater internal fragmentation

— Increased chance of paging in unnecessary data

0OS/161 on the MIPS uses a 4KB virtual memory page size.

CS350 Operating Systems Winter 2009

Virtual Memory 69

How Much Physical Memory Does a Process Need?

e Principle of locality suggests that some portions of thecpss'’s virtual
address space are more likely to be referenced than others.

e A refinement of this principle is th&orking set modedf process reference
behaviour.

e According to the working set model, at any given time someipoiof a
program’s address space will be heavily used and the remaimd not be.
The heavily used portion of the address space is called/tinking setof the
process.

e The working set of a process may change over time.

e Theresident sebf a process is the set of pages that are located in memory.

According to the working set model, if a process’s residenirs
cludes its working set, it will rarely page fault.

CS350 Operating Systems Winter 2009

Virtual Memory

70

Pl D

805
831
834
838
840
848
851
853
857
867

VSZ
13940
2620
7936
6964
14720
8412
34980
19804
9656
4608

Resident Set Sizes (Example)

RSS COMVAND
5956 /usr/ bi n/ gnome-sessi on
848 /usr/ bin/ssh-agent
5832 /usr/lib/gconf2/gconfd-2 11
2292 gnone- snpr oxy
5008 gnone-settings-daenon
3888 sawfi sh
7544 nauti | us

14208 gnone- panel
2672 gpilotd

1252 gnone- nane-service

CS350

Operating Systems

Winter 2009

Virtual Memory 71

Refining the Working Set Model

e DefinelWS(t, A) to be the set of pages referenced by a given process during
the time intervalt — A, t). W S(t, A) is the working set of the process at
timet.

e Define|WS(t, A)| to be the size oWV S (¢, A), i.e., the number aodlistinct
pages referenced by the process.

e If the operating system could traék S(¢, A), it could:

— use|W S(t, A)| to determine the number of frames to allocate to the
process under a local page replacement policy

— useW S(t, A) directly to implement a working-set based page
replacement policy: any page that is no longer in the workeigs a
candidate for replacement

CS350 Operating Systems Winter 2009

Virtual Memory 72

Page Fault Frequency

e A more direct way to allocate memory to processes is to medhkeirpage
fault frequencies the number of page faults they generate per unit time.

e |f a process’s page fault frequency is too high, it needs mmmory. If it is
low, it may be able to surrender memory.

e The working set model suggests that a page fault frequemndtyspbuld have a
sharp “knee”.

CS350 Operating Systems Winter 2009

Virtual Memory 73

A Page Fault Frequency Plot

high
page fault frequency curve
process
page fault
frequency
thresholds
low

few many
frames allocated to process

CS350 Operating Systems Winter 2009

Virtual Memory 74

Thrashing and Load Control

e \What is a good multiprogramming level?
— If too low: resources are idle
— If too high: too few resources per process
e A system that is spending too much time paging is said tthizeshing
Thrashing occurs when there are too many processes compatithe
available memory.
e Thrashing can be cured by load shedding, e.g.,
— Killing processes (not nice)

— Suspending answapping ouprocesses (nicer)

CS350 Operating Systems Winter 2009

Virtual Memory 75

Swapping Out Processes

e Swapping a process out means removing all of its pages fromamg or
marking them so that they will be removed by the normal pag&oement
process. Suspending a process ensures that it is not rennblbé it is
swapped out.

e Which process(es) to suspend?

— low priority processes
— blocked processes
— large processes (lots of space freed) or small processasr(&areload)

e There must also be a policy for making suspended processey nen
system load has decreased.

CS350 Operating Systems Winter 2009

