
I/O 1

Devices and Device Controllers

• network interface

• graphics adapter

• secondary storage (disks, tape) and storage controllers

• serial (e.g., mouse, keyboard)

• sound

• co-processors

• . . .

CS350 Operating Systems Spring 2011



I/O 2

Bus Architecture Example

keyboard mouse

CPU

MemoryBridge

Bridge

Modem Sound

Graphics

Cache

PCI bus

ISA bus

USB
controller

SCSI
controller

CS350 Operating Systems Spring 2011



I/O 3

Simplified Bus Architecture

M: memory
K: device controller

Key

CPU M K K K

other controllersdisk controller

CS350 Operating Systems Spring 2011



I/O 4

Sys/161 LAMEbus Devices

• LAMEbus controller

• timer/clock - current time, timer, beep

• disk drive - persistent storage

• serial console - character input/output

• text screen - character-oriented graphics

• network interface - packet input/output

• emulator file system - simulation-specific

• hardware trace control - simulation-specific

• random number generator

CS350 Operating Systems Spring 2011



I/O 5

Device Interactions

• device registers

– command, status, and data registers

– CPU accesses register via:

∗ special I/O instructions

∗ memory mapping

• interrupts

– used by device for asynchronous notification (e.g., of request completion)

– handled by interrupt handlers in the operating system

CS350 Operating Systems Spring 2011



I/O 6

Example: LAMEbus timer device registers

Offset Size Type Description

0 4 status current time (seconds)

4 4 status current time (nanoseconds)

8 4 command restart-on-expiry (auto-restart countdown?)

12 4 status and command interrupt (reading clears)

16 4 status and command countdown time (microseconds)

20 4 command speaker (causes beeps)

Sys/161 uses memory-mapping. Each device’s registers are

mapped into thephysical address spaceof the MIPS processor.

CS350 Operating Systems Spring 2011



I/O 7

Example: LAMEbus disk controller

Offset Size Type Description

0 4 status number of sectors

4 4 status and command status

8 4 command sector number

12 4 status rotational speed (RPM)

32768 512 data transfer buffer

CS350 Operating Systems Spring 2011



I/O 8

MIPS/OS161 Physical Address Space

RAM

devices: 0x1fe00000 − 0x1fffffff

ROM: 0x1fc00000 − 0x1fdfffff

0x00000000 0xffffffff

0x1fe00000 0x1fffffff

64 KB device "slot"

Each device is assigned to one of 32 64KB device “slots”. A de-

vice’s registers and data buffers are memory-mapped into its as-

signed slot.

CS350 Operating Systems Spring 2011



I/O 9

Device Control Example: Controlling the Timer

/* Registers (offsets within the device slot) */

#define LT_REG_SEC 0 /* time of day: seconds */

#define LT_REG_NSEC 4 /* time of day: nanoseconds */

#define LT_REG_ROE 8 /* Restart On countdown-timer Expiry flag *
#define LT_REG_IRQ 12 /* Interrupt status register */

#define LT_REG_COUNT 16 /* Time for countdown timer (usec) */

#define LT_REG_SPKR 20 /* Beep control */

/* Get the number of seconds from the lamebus timer */

/* lt->lt_buspos is the slot number of the target device */

secs = bus_read_register(lt->lt_bus, lt->lt_buspos,

LT_REG_SEC);

/* Get the timer to beep. Doesn’t matter what value is sent */

bus_write_register(lt->lt_bus, lt->lt_buspos,

LT_REG_SPKR, 440);

CS350 Operating Systems Spring 2011



I/O 10

Device Control Example: Address Calculations

/* LAMEbus mapping size per slot */
#define LB_SLOT_SIZE 65536
#define MIPS_KSEG1 0xa0000000
#define LB_BASEADDR (MIPS_KSEG1 + 0x1fe00000)

/* Compute the virtual address of the specified offset */
/* into the specified device slot */
void *
lamebus_map_area(struct lamebus_softc *bus, int slot,

u_int32_t offset)
{

u_int32_t address;
(void)bus; // not needed

assert(slot>=0 && slot<LB_NSLOTS);
address = LB_BASEADDR + slot*LB_SLOT_SIZE + offset;
return (void *)address;

}

CS350 Operating Systems Spring 2011



I/O 11

Device Control Example: Commanding the Device

/* FROM: kern/arch/mips/mips/lamebus_mips.c */
/* Read 32-bit register from a LAMEbus device. */
u_int32_t
lamebus_read_register(struct lamebus_softc *bus,

int slot, u_int32_t offset)
{

u_int32_t *ptr = lamebus_map_area(bus, slot, offset);
return *ptr;

}

/* Write a 32-bit register of a LAMEbus device. */
void
lamebus_write_register(struct lamebus_softc *bus,

int slot, u_int32_t offset, u_int32_t val)
{

u_int32_t *ptr = lamebus_map_area(bus, slot, offset);

*ptr = val;
}

CS350 Operating Systems Spring 2011



I/O 12

Device Data Transfer

• Sometimes, a device operation will involve a large chunk of data - much

larger than can be moved with a single instruction. Example:reading a block

of data from a disk.

• Devices may have data buffers for such data - but how to get thedata between

the device and memory?

• If the data buffer is memory-mapped, the kernel can move the data iteratively,

one word at a time. This is calledprogram-controlled I/O.

• Program controlled I/O is simple, but it means that the CPU isbusy executing

kernel codewhile the data is being transferred.

• The alternative is called Direct Memory Access (DMA). During a DMA data

transfer, the CPU isnot busyand is free to do something else, e.g., run an

application.

Sys/161 LAMEbus devices do program-controlled I/O.

CS350 Operating Systems Spring 2011



I/O 13

Direct Memory Access (DMA)

• DMA is used for block data transfers between devices (e.g., adisk controller)
and memory

• Under DMA, the CPU initiates the data transfer and is notifiedwhen the

transfer is finished. However, the device (not the CPU) controls the transfer
itself.

CPU M K K
K

(disk)

1 2

3

1. CPU issues DMA request to controller

2. controller directs data transfer

3. controller interrupts CPU

CS350 Operating Systems Spring 2011



I/O 14

Applications and Devices

• interaction with devices is normally accomplished by device drivers in the OS,

so that the OS can control how the devices are used

• applications see a simplified view of devices through a system call interface

(e.g., block vs. character devices in Unix)

– the OS may provide a system call interface that permits low level

interaction between application programs and a device

• operating system oftenbuffersdata that is moving between devices and

application programs’ address spaces

– benefits: solve timing, size mismatch problems

– drawback: performance

CS350 Operating Systems Spring 2011



I/O 15

Logical View of a Disk Drive

• disk is an array of numbered blocks (or sectors)

• each block is the same size (e.g., 512 bytes)

• blocks are the unit of transfer between the disk and memory

– typically, one or more contiguous blocks can be transferredin a single

operation

• storage isnon-volatile, i.e., data persists even when the device is without

power

CS350 Operating Systems Spring 2011



I/O 16

A Disk Platter’s Surface

Track

Sector

CS350 Operating Systems Spring 2011



I/O 17

Physical Structure of a Disk Drive

Cylinder

Shaft

Track

Sector

CS350 Operating Systems Spring 2011



I/O 18

Simplified Cost Model for Disk Block Transfer

• moving data to/from a disk involves:

seek time: move the read/write heads to the appropriate cylinder

rotational latency: wait until the desired sectors spin to the read/write heads

transfer time: wait while the desired sectors spin past the read/write heads

• request service time is the sum of seek time, rotational latency, and transfer

time

tservice = tseek + trot + ttransfer

• note that there are other overheads but they are typically small relative to these

three

CS350 Operating Systems Spring 2011



I/O 19

Rotational Latency and Transfer Time

• rotational latency depends on the rotational speed of the disk

• if the disk spins atω rotations per second:

0 ≤ trot ≤
1

ω

• expected rotational latency:

t̄rot =
1

2ω

• transfer time depends on the rotational speed and on the amount of data

transferred

• if k sectors are to be transferred and there areT sectors per track:

ttransfer =
k

Tω

CS350 Operating Systems Spring 2011



I/O 20

Seek Time

• seek time depends on the speed of the arm on which the read/write heads are

mounted.

• a simple linear seek time model:

– tmaxseek is the time required to move the read/write heads from the

innermost cylinder to the outermost cylinder

– C is the total number of cylinders

• if k is the requiredseek distance(k > 0):

tseek(k) =
k

C
tmaxseek

CS350 Operating Systems Spring 2011



I/O 21

Performance Implications of Disk Characteristics

• larger transfers to/from a disk device aremore efficientthan smaller ones.

That is, the cost (time) per byte is smaller for larger transfers. (Why?)

• sequential I/O is faster than non-sequential I/O

– sequential I/O operations eliminate the need for (most) seeks

– disks use other techniques, liketrack buffering, to reduce the cost of

sequential I/O even more

CS350 Operating Systems Spring 2011



I/O 22

Disk Head Scheduling

• goal: reduce seek times by controlling the order in which requests are serviced

• disk head scheduling may be performed by the controller, by the operating

system, or both

• for disk head scheduling to be effective, there must be a queue of outstanding

disk requests (otherwise there is nothing to reorder)

• an on-line approach is required: the disk request queue is not static

CS350 Operating Systems Spring 2011



I/O 23

FCFS Disk Head Scheduling

• handle requests in the order in which they arrive

• fair and simple, but no optimization of seek times

1 50 100 200150

14 37 53 65 70 122 130 183

arrival order: 183 37 122 14 130 65 70

head

104

104

CS350 Operating Systems Spring 2011



I/O 24

Shortest Seek Time First (SSTF)

• choose closest request (a greedy approach)

• seek times are reduced, but requests may starve

1 50 100 200150

14 37 53 65 70 122 130 183

arrival order: 183 37 122 14 130 65 70

head

104

104

CS350 Operating Systems Spring 2011



I/O 25

SCAN and LOOK

• LOOK is the commonly-implemented variant of SCAN. Also known as the

“elevator” algorithm.

• Under LOOK, the disk head moves in one direction until there are no more

requests in front of it, then reverses direction.

• seek time reduction without starvation

• SCAN is like LOOK, except the read/write heads always move all the way to

the edge of the disk in each direction.

CS350 Operating Systems Spring 2011



I/O 26

SCAN Example

1 50 100 200150

14 37 53 65 70 122 130 183

arrival order: 183 37 122 14 130 65 70

head

104

104

CS350 Operating Systems Spring 2011



I/O 27

Circular SCAN (C-SCAN) and Circular LOOK (C-LOOK)

• C-LOOK and C-SCAN are variants of LOOK and SCAN

• Under C-LOOK, the disk head moves in one direction until there are no more

requests in front of it, then it jumps back and begins anotherscan in the same

direction as the first.

• C-LOOK avoids bias against “edge” cylinders

CS350 Operating Systems Spring 2011



I/O 28

C-LOOK Example

1 50 100 200150

14 37 53 65 70 122 130 183

arrival order: 183 37 122 14 130 65 70

head

104

104

CS350 Operating Systems Spring 2011


