Processes and the Kernel 1

What is a Process?

Answer 1: a process is an abstraction of a program in execution

Answer 2: a process consists of

e anaddress space, which represents the memory that holds the program’s
code and data

e athread of execution (possibly several threads)

e other resources associated with the running program. Fonple:

open files
sockets
attributes, such as a name (process identifier)

A process with one thread issaquential process. A process with
more than one thread iscancurrent process.

CS350 Operating Systems Spring 2011

Processes and the Kernel 2

Multiprogramming

e multiprogramming means having multiple processes exjsirthe same time
e most modern, general purpose operating systems suppdiprogramming
¢ all processes share the available hardware resourcesheittharing

coordinated by the operating system:

— Each process uses some of the available memory to hold itesglspace.
The OS decides which memory and how much memory each proee&ss g

— OS can coordinate shared access to devices (keyboards), disice
processes use these devices indirectly, by making syst#sn ca

— Processemeshare the processor(s). Again, timesharing is controlled by
the operating system.

e OS ensures that processes are isolated from one anotlezprbdess
communication should be possible, but only at the expleguest of the
processes involved.

CS350 Operating Systems Spring 2011

Processes and the Kernel 3

The OS Kernel

e The kernel is a program. It has code and data like any othgrano.

e Usually kernel code runs in a privileged execution modeJewbiher
programs do not

CS350 Operating Systems Spring 2011

Processes and the Kernel 4

An Application and the Kernel

application kernel

stack | data code memory data code

thread library

CPU registers

CS350 Operating Systems Spring 2011

Processes and the Kernel 5

Kernel Privilege, Kernel Protection

e What does it mean to run in privileged mode?

e Kernel uses privilege to
— control hardware

— protect and isolate itself from processes

e privileges vary from platform to platform, but may include:
— ability to execute special instructions (likal t)
— ability to manipulate processor state (like execution mode
— ability to access memory addresses that can’t be accedseivide
e Kkernel ensures that it isolated from processes. No process can execute or

change kernel code, or read or write kernel data, excepugfrcontrolled
mechanisms like system calls.

CS350 Operating Systems Spring 2011

Processes and the Kernel 6

System Calls

e System calls are an interface between processes and thed.kern
e A process uses system calls to request operating systerneserv

e From point of view of the process, these services are useartopulate the
abstractions that are part of its execution environmentekample, a process
might use a system call to

— open afile
— send a message over a pipe

create another process

— increase the size of its address space

CS350 Operating Systems Spring 2011

Processes and the Kernel 7

How System Calls Work

e The hardware provides a mechanism that a running prograrassto cause
a system call. Often, it is a special instruction, e.g., tHe8§bsyscal |
instruction.

e What happens on a system call:

— the processor is switched to system (privileged) executiode

— key parts of the current thread context, such as the progoamter, are
saved

— the program counter is set to a fixed (determined by the hasjwiaemory
address, which is within the kernel's address space

CS350 Operating Systems Spring 2011

Processes and the Kernel 8

System Call Execution and Return

e Once a system call occurs, the calling thread will be exaguisystem call
handler, which is part of the kernel, in system mode.

e The kernel’'s handler determines which service the callimg@ss wanted, and
performs that service.
e When the kernel is finished, it returns from the system cdlisTheans:

— restore the key parts of the thread context that were saved Wie system
call was made

— switch the processor back to unprivileged (user) executiode

e Now the thread is executing the calling process’ progranmagécking up
where it left off when it made the system call.

A system call causes a thread to stop executing applicabde c
and to start executing kernel code in privileged mode. Tlis¢esy
call return switches the thread back to executing appbtcatode
in unprivileged mode.

CS350 Operating Systems Spring 2011

Processes and the Kernel 9

System Call Diagram

Process Kernel
T
| time
| system call
“““““““““““““ ,
\ I
thread ”
execution |
path ”
system call return |
S O A
|
|
|
|
|
|
Y
Y
CS350 Operating Systems Spring 2011
Processes and the Kernel 10

0S/161cl ose System Call Description

Library: standard C library (libc)
Synopsis:

#i ncl ude <uni std. h>

i nt

close(int fd);

Description: The file handld d is closed.. ..

Return Values: On success;| ose returns 0. On error, -1 is returned and
er r no is set according to the error encountered.

Errors:
EBADF: fd is not a valid file handle
EIO: A hard I/O error occurred

CS350 Operating Systems Spring 2011

Processes and the Kernel 11

A Tiny OS/161 Application that Usescl ose: SyscallExample

/= Program Syscal | Exanpl e =/
#i ncl ude <uni std. h>
#i ncl ude <errno. h>

i nt
mai n()
{
Int Xx;
x = cl ose(999);
if (x <0) {
return errno;
}
return x;
}
CS350 Operating Systems Spring 2011
Processes and the Kernel 12
SyscallExample, Disassembled
00400100 <nai n>:
400100: 27bdffe8 addiu sp,sp,-24
400104: afbf0010 sw ra, 16(sp)
400108: 0c100077 jal 4001dc <cl ose>
40010c: 240403e7 |i a0,999
400110: 04400005 bltz vO0, 400128 <mai n+0x28>
400114: 00401821 nove vi,vO0
400118: 8fbf0010 Iwra, 16(sp)
40011c: 00601021 nove vO,vl
400120: 03e00008 jr ra
400124: 27bd0018 addiu sp, sp, 24
400128: 3c031000 [lui v1,0x1000
40012c: 8c630000 |w v1,0(vl)
400130: 08100046 | 400118 <mai n+0x18>
400134: 00000000 nop

The above can be obtained by disassembling the compiled
Syscal | Exanpl e executable file witlts350- obj dunp -d

CS350 Operating Systems Spring 2011

Processes and the Kernel 13

System Call Wrapper Functions from the Standard Library

004001d4 <wite>:
4001d4: 08100060 | 400180 <_syscall>
4001d8: 24020006 Ii vO,6

004001dc <cl ose>:
4001dc: 08100060 | 400180 <__syscall>
4001e0: 24020007 Ii vO,7

004001e4 <reboot >:
4001e4: 08100060 | 400180 <__syscall>
4001e8: 24020008 1Ii vO,8

The above is disassembled code from the standard C li-
brary (libc), which is linked withSyscal | Exanpl e. See
lib/libc/syscalls.Sfor more information about how the
standard C library is implemented.

CS350 Operating Systems Spring 2011

Processes and the Kernel 14

0S/161 MIPS System Call Conventions

e When thesyscal | instruction occurs:
— An integer system call code should be located in registen®® (
— Any system call arguments should be located in registersaB¥ R5 (al),
R6 (a2), and R7 (a3), much like procedure call arguments.
e When the system call returns

— register R7 (a3) will contain a O if the system call succeedea 1 if the
system call failed

— register R2 (v0) will contain the system call return valuthé system call
succeeded, or an error number (errno) if the system cadidrail

CS350 Operating Systems Spring 2011

Processes and the Kernel 15

0S/161 System Call Code Definitions

#defi ne SYS read
#define SYS wite
#define SYS cl ose
#defi ne SYS reboot
#define SYS sync
#defi ne SYS_sbrk 10

© 00 N o O

This comes fronker n/ i ncl ude/ ker n/ cal | no. h. The files
in kern/ i ncl ude/ ker n define things (like system call codes)
that must be known by both the kernel and applications.

CS350 Operating Systems Spring 2011

Processes and the Kernel 16

The OS/161 System Call and Return Processing

00400180 <__syscall >:
400180: 0000000c syscal
400184: 10e00005 beqgz a3,40019c <_syscal |l +0Ox1lc>
400188: 00000000 nop
40018c: 3c011000 [lui at, 0x1000
400190: ac220000 sw vO,0(at)
400194: 2403ffff i vi,-1
400198: 2402ffff |i vO,-1
40019c: 03e00008 jr ra

4001a0: 00000000 nop

The system call and return processing, from the standaror &
Like the rest of the library, this is unprivileged, userdégode.

CS350 Operating Systems Spring 2011

Processes and the Kernel 17

0S/161 MIPS Exception Handler

exception:
move k1, sp /* Save previous stack pointer in k1 =/
nfcO kO, cO_status /* Get status register =/
andi kO, kO, CST _KuUp /* Check the we-were-in-user-node bit x/

beq kO, $0, 1f [+ If clear,fromkernel, al ready have stack
nop [+ delay slot */
/+ Coming fromuser node - |oad kernel stack into sp */
|l a kO, curkstack /* get address of "curkstack" =/
Iw sp, 0(kO) [+ get its value =/
nop [+ delay slot for the |oad */
1:
nfcO kO, cO _cause /+ Now, |oad the exception cause. =x/
j comon_exception [+ Skip to common code */
nop [+ delay slot =*/
When thesyscal | instruction occurs, the MIPS transfers control to
addresDx80000080. This kernel exception handler lives there. See
kern/ arch/ nm ps/ m ps/ exception. S
CS350 Operating Systems Spring 2011
Processes and the Kernel 18

0S/161 User and Kernel Thread Stacks

application

stack || data code memory stack

thread library

CPU registers

Each OS/161 thread has two stacks, one that is used while the
thread is executing unprivileged application code, andrarahat
is used while the thread is executing privileged kernel code

CS350 Operating Systems Spring 2011

Processes and the Kernel 19

0S/161 MIPS Exception Handler (cont’d)

Theconmon_except i on code does the following:

1. allocates d@rap frame on the thread’s kernel stack and saves the user-level
application’s complete processor state (all registerggixkO and k1) into the
trap frame.

2. calls them ps_t r ap function to continue processing the exception.

3. whenm ps_t r ap returns, restores the application processor state from the
trap frame to the registers

4. issues MIP$ r andr f e (restore from exception) instructions to return
control to the application code. The instruction takes control back to
location specified by the application program counter whersyscal |
occurred, and thef e (which happens in the delay slot of the) restores the
processor to unprivileged mode

CS350 Operating Systems Spring 2011

Processes and the Kernel 20

0S/161 Trap Frame

application kernel

stack || data code memory stack

thread library

/

H _H_ _H_ _H_ _H_ trap frame with saved

application state

CPU registers

While the kernel handles the system call, the applicati@Pt)
state is saved in a trap frame on the thread’s kernel stackthan
CPU registers are available to hold kernel execution state.

CS350 Operating Systems Spring 2011

Processes and the Kernel 21

m ps_t r ap: Handling System Calls, Exceptions, and Interrupts

e On the MIPS, the same exception handler is invoked to hadles calls,
exceptions and interrupts

e The hardware sets a code to indicate the reason (systemaption, or
interrupt) that the exception handler has been invoked

e OS/161 has a handler function corresponding to each of tleesens. The
m ps_t r ap function tests the reason code and calls the appropriateidumn
the system call handlen{ ps_syscal |) in the case of a system call.

e M ps_trap can be found ikker n/ ar ch/ m ps/ m ps/trap. c.

Interrupts and exceptions will be presented shortly

CS350 Operating Systems Spring 2011

Processes and the Kernel 22

0S/161 MIPS System Call Handler

m ps_syscal | (struct trapframe *tf) {
assert (curspl ==0);
callno = tf->tf_v0; retval = 0;
switch (callno) {
case SYS reboot:
err = sys_reboot(tf->tf_a0); /* in kern/main/main.c =/
br eak;

[+ Add stuff here =*/

defaul t:
kprintf("Unknown syscall %\ n", callno);
err = ENOSYS;
br eak;

m ps_syscall checks the system call code and in-
vokes a handler for the indicated system call. See
kern/arch/ m ps/ m ps/syscall.c

CS350 Operating Systems Spring 2011

Processes and the Kernel 23

0S/161 MIPS System Call Return Handling

if (err) {
tf->tf _vO
tf->tf_a3
} else {
/= Success. =/
tf->tf_vO retval ;
tf->tf_a3 0; /* signal no error =*/

err;
1; /= signal an error */

/* Advance the PC, to avoid the syscall again. =/
tf->tf_epc += 4;

/= Make sure the syscall code didn't forget to |ower spl
assert (curspl ==0);

m ps_syscal | mustensure that the kernel adheres to the system

call return convention.
CS350 Operating Systems Spring 2011
Processes and the Kernel 24

Exceptions

e Exceptions are another way that control is transferred fgmocess to the
kernel.

e Exceptions are conditions that occur during the executf@nanstruction by
a process. For example, arithmetic overflows, illegal urdtons, or page
faults (to be discussed later).

e exceptions are detected by the hardware

e when an exception is detected, the hardware transfersotomia specific
address

e normally, a kernel exception handler is located at that eskir

Exception handling is similar to, but not identical to, systcall
handling. (What is different?)

CS350 Operating Systems Spring 2011

Processes and the Kernel 25

MIPS Exceptions

/= Syscall =*/

. / = Breakpoi nt =/

EX_RI 10 /| Reserved (illegal) instruction */
EX_CPU 11 / = Coprocessor unusable */

EX_OVF 12 [+ Arithmetic overflow =/

EX | RQ 0 /* Interrupt =*/
EX_MOD 1 /+ TLB Modify (wite to read-only page) =/
EX TLBL 2 [+ TLB mss on | oad */
EX TLBS 3 [+ TLB m ss on store =/
EX_ADEL 4 /+ Address error on |oad */
EX ADES 5 [+ Address error on store x/
EX | BE 6 [+ Bus error on instruction fetch =/
EX_DBE 7 /* Bus error on data |oad *or* store */
8
9

In OS/161,m ps_t r ap uses these codes to decide whether it has
been invoked because of an interrupt, a system call, or agpexc
tion.

CS350 Operating Systems Spring 2011

Processes and the Kernel 26

Interrupts (Revisited)

e Interrupts are a third mechanism by which control may besfianed to the
kernel

e Interrupts are similar to exceptions. However, they aresedly hardware
devices, not by the execution of a program. For example:

— anetwork interface may generate an interrupt when a netpacket
arrives

— adisk controller may generate an interrupt to indicate itias finished
writing data to the disk

— atimer may generate an interrupt to indicate that time hasquh
¢ Interrupt handling is similar to exception handling - centrexecution context

is saved, and control is transferred to a kernel interruptle at a fixed
address.

CS350 Operating Systems Spring 2011

Processes and the Kernel 27

Interrupts, Exceptions, and System Calls: Summary

e interrupts, exceptions and system calls are three mecharig which control
is transferred from an application program to the kernel

e when these events occur, the hardware switches the CPUriatieged mode
and transfers control to a predefined location, at which aeiéandler
should be located

¢ the handler saves the application thread context so thetimel code can be
executed on the CPU, and restores the application threddxtguast before
control is returned to the application

CS350 Operating Systems Spring 2011

Processes and the Kernel 28

Implementation of Processes

e The kernel maintains information about all of the processélse system in a
data structure often called the process table.

e Per-process information may include:
— process identifier and owner

— current process state and other scheduling information

lists of resources allocated to the process, such as open file

— accounting information

In OS/161, some process information (e.g., an address space
pointer) is kept in the hr ead structure. This works only because
each OS/161 process has a single thread.

CS350 Operating Systems Spring 2011

Processes and the Kernel 29

Implementing Timesharing

e whenever a system call, exception, or interrupt occurstrobis transferred
from the running program to the kernel

¢ at these points, the kernel has the ability to cause a coswétth from the
running process’ thread to another process’ thread

¢ notice that these context switches always occur while aga©ichread is
executing kernel code

By switching from one process’s thread to another process’s
thread, the kernel timeshares the processor among mutiple

cesses.
CS350 Operating Systems Spring 2011
Processes and the Kernel 30
Two Processes in 0S/161
application #1 kernel application #2
stack || data code stack stack stack|| data || code
trap frame for app #1 thread library

_ _ _ _ _ _ saved kernel thread
context for thread #1

CPU registers

CS350 Operating Systems Spring 2011

Processes and the Kernel

31

Timesharing Example (Part 1)

Process A Kernel Process B
” : B’s thread is
| system call : ready, not running
| or m.xomc:o: -
” or interrupt Sl
I return
! o _
P |
- |
ST Asthreadis v
) ready, not running
context switch
Kernel switches execution context to Process B.

CS350 Operating Systems Spring 2011
Processes and the Kernel 32
Timesharing Example (Part 2)

Process A Kernel Process B
, :
:
:
:
Z
e B
-
! ~ - _____|_-.
- |
: ”
ch : system call |
context switc or exception ”
: or interrupt |
/ ”
| return e B’s thread is
” : ready, not running
\/ \]
Kernel switches execution context back to process A.
CS350 Operating Systems Spring 2011

Processes and the Kernel 33

Implementing Preemption

¢ the kernel uses interrupts from the system timer to meabkerpdssage of
time and to determine whether the running process’s quahaswexpired.

e atimer interrupt (like any other interrupt) transfers eohfrom the running
program to the kernel.

e this gives the kernel the opportunity to preempt the runtimgad and
dispatch a new one.

CS350 Operating Systems Spring 2011

Processes and the Kernel 34

Preemptive Multiprogramming Example

Process A Kernel Process B

timer interrupt

\\\\\\\\\\\\\\\\\\\ Key:

: A N I ready thread

\ T B running threac

context R S E e
switches : !

CS350 Operating Systems Spring 2011

Processes and the Kernel 35

System Calls for Process Management

Linux 0S/161
Creation fork,execv fork,execv
Destruction _exit,kill _exit
Synchronization wait,waitpid,pause, . waitpid
Attribute Mgmt || getpid,getuid,nice,getrusage, getpid

CS350 Operating Systems Spring 2011

Processes and the Kernel 36

The Process Model

¢ Although the general operations supported by the procésdane are
straightforward, there are some less obvious aspects oépsdehaviour that
must be defined by an operating system.

Process Initialization: When a new process is created, how is it initialized?
What is in the address space? What is the initial thread gtihi2oes it
have any other resources?

Multithreading: Are concurrent processes supported, or is each process
limited to a single thread?

Inter-Process Relationships: Are there relationships among processes, e.g,
parent/child? If so, what do these relationships mean?

CS350 Operating Systems Spring 2011

