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What is a Process?

Answer 1: a process is an abstraction of a program in execution

Answer 2: a process consists of

e anaddress space, which represents the memory that holds the program’s
code and data

e athread of execution (possibly several threads)

e other resources associated with the running program. Fonple:

open files
sockets
attributes, such as a name (process identifier)

A process with one thread issaquential process. A process with
more than one thread iscancurrent process.
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Multiprogramming

e multiprogramming means having multiple processes exjsirthe same time
e most modern, general purpose operating systems suppdiprogramming
¢ all processes share the available hardware resourcesheittharing

coordinated by the operating system:

— Each process uses some of the available memory to hold itesglspace.
The OS decides which memory and how much memory each proee&ss g

— OS can coordinate shared access to devices (keyboards), disice
processes use these devices indirectly, by making syst#sn ca

— Processemeshare the processor(s). Again, timesharing is controlled by
the operating system.

e OS ensures that processes are isolated from one anotlezprbdess
communication should be possible, but only at the expleguest of the
processes involved.
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The OS Kernel

e The kernel is a program. It has code and data like any othgrano.

e Usually kernel code runs in a privileged execution modeJewbiher
programs do not
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An Application and the Kernel

application kernel

stack | data code memory data code

thread library

CPU registers
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Kernel Privilege, Kernel Protection

e What does it mean to run in privileged mode?

e Kernel uses privilege to
— control hardware

— protect and isolate itself from processes

e privileges vary from platform to platform, but may include:
— ability to execute special instructions (likal t)
— ability to manipulate processor state (like execution mode
— ability to access memory addresses that can’t be accedseivide
e Kkernel ensures that it isolated from processes. No process can execute or

change kernel code, or read or write kernel data, excepugfrcontrolled
mechanisms like system calls.
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System Calls

e System calls are an interface between processes and thed.kern
e A process uses system calls to request operating systerneserv

e From point of view of the process, these services are useartopulate the
abstractions that are part of its execution environmentekample, a process
might use a system call to

— open afile
— send a message over a pipe

create another process

— increase the size of its address space
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How System Calls Work

e The hardware provides a mechanism that a running prograrassto cause
a system call. Often, it is a special instruction, e.g., tHe8§bsyscal |
instruction.

e What happens on a system call:

— the processor is switched to system (privileged) executiode

— key parts of the current thread context, such as the progoamter, are
saved

— the program counter is set to a fixed (determined by the hasjwiaemory
address, which is within the kernel's address space
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System Call Execution and Return

e Once a system call occurs, the calling thread will be exaguisystem call
handler, which is part of the kernel, in system mode.

e The kernel’'s handler determines which service the callimg@ss wanted, and
performs that service.
e When the kernel is finished, it returns from the system cdlisTheans:

— restore the key parts of the thread context that were saved Wie system
call was made

— switch the processor back to unprivileged (user) executiode

e Now the thread is executing the calling process’ progranmagécking up
where it left off when it made the system call.

A system call causes a thread to stop executing applicabde c
and to start executing kernel code in privileged mode. Tlis¢esy
call return switches the thread back to executing appbtcatode
in unprivileged mode.
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System Call Diagram

Process Kernel
T
| time
| system call
“““““““““““““ ,
\ I
thread ”
execution |
path ”
system call return |
S O A
|
|
|
|
|
|
Y
Y
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0S/161cl ose System Call Description

Library: standard C library (libc)
Synopsis:

#i ncl ude <uni std. h>

i nt

close(int fd);

Description: The file handld d is closed.. ..

Return Values: On success;| ose returns 0. On error, -1 is returned and
er r no is set according to the error encountered.

Errors:
EBADF: fd is not a valid file handle
EIO: A hard I/O error occurred
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A Tiny OS/161 Application that Usescl ose: SyscallExample

/= Program Syscal | Exanpl e =/
#i ncl ude <uni std. h>
#i ncl ude <errno. h>

i nt
mai n()
{
Int Xx;
x = cl ose(999);
if (x <0) {
return errno;
}
return x;
}
CS350 Operating Systems Spring 2011
Processes and the Kernel 12
SyscallExample, Disassembled
00400100 <nai n>:
400100: 27bdffe8 addiu sp,sp,-24
400104: afbf0010 sw ra, 16(sp)
400108: 0c100077 jal 4001dc <cl ose>
40010c: 240403e7 |i a0,999
400110: 04400005 bltz vO0, 400128 <mai n+0x28>
400114: 00401821 nove vi,vO0
400118: 8fbf0010 Iwra, 16(sp)
40011c: 00601021 nove vO,vl
400120: 03e00008 jr ra
400124: 27bd0018 addiu sp, sp, 24
400128: 3c031000 [lui v1,0x1000
40012c: 8c630000 |w v1,0(vl)
400130: 08100046 | 400118 <mai n+0x18>
400134: 00000000 nop

The above can be obtained by disassembling the compiled
Syscal | Exanpl e executable file witlts350- obj dunp -d
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System Call Wrapper Functions from the Standard Library

004001d4 <wite>:
4001d4: 08100060 | 400180 <_syscall>
4001d8: 24020006 Ii vO,6

004001dc <cl ose>:
4001dc: 08100060 | 400180 <__syscall>
4001e0: 24020007 Ii vO,7

004001e4 <reboot >:
4001e4: 08100060 | 400180 <__syscall>
4001e8: 24020008 1Ii vO,8

The above is disassembled code from the standard C li-
brary (libc), which is linked withSyscal | Exanpl e. See
lib/libc/syscalls.Sfor more information about how the
standard C library is implemented.
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0S/161 MIPS System Call Conventions

e When thesyscal | instruction occurs:
— An integer system call code should be located in registen®® (
— Any system call arguments should be located in registersaB¥ R5 (al),
R6 (a2), and R7 (a3), much like procedure call arguments.
e When the system call returns

— register R7 (a3) will contain a O if the system call succeedea 1 if the
system call failed

— register R2 (v0) will contain the system call return valuthé system call
succeeded, or an error number (errno) if the system cadidrail
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0S/161 System Call Code Definitions

#defi ne SYS read
#define SYS wite
#define SYS cl ose
#defi ne SYS reboot
#define SYS sync
#defi ne SYS_sbrk 10

© 00 N o O

This comes fronker n/ i ncl ude/ ker n/ cal | no. h. The files
in kern/ i ncl ude/ ker n define things (like system call codes)
that must be known by both the kernel and applications.
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The OS/161 System Call and Return Processing

00400180 <__syscall >:
400180: 0000000c syscal
400184: 10e00005 beqgz a3,40019c <_syscal |l +0Ox1lc>
400188: 00000000 nop
40018c: 3c011000 [lui at, 0x1000
400190: ac220000 sw vO,0(at)
400194: 2403ffff i vi,-1
400198: 2402ffff |i vO,-1
40019c: 03e00008 jr ra

4001a0: 00000000 nop

The system call and return processing, from the standaror &
Like the rest of the library, this is unprivileged, userdégode.

CS350 Operating Systems Spring 2011




Processes and the Kernel 17

0S/161 MIPS Exception Handler

exception:
move k1, sp /* Save previous stack pointer in k1 =/
nfcO kO, cO_status /* Get status register =/
andi kO, kO, CST _KuUp /* Check the we-were-in-user-node bit x/

beq kO, $0, 1f [+ If clear,fromkernel, al ready have stack
nop [+ delay slot */
/+ Coming fromuser node - |oad kernel stack into sp */
|l a kO, curkstack /* get address of "curkstack" =/
Iw sp, 0(kO) [+ get its value =/
nop [+ delay slot for the |oad */
1:
nfcO kO, cO _cause /+ Now, |oad the exception cause. =x/
j comon_exception [+ Skip to common code */
nop [+ delay slot =*/
When thesyscal | instruction occurs, the MIPS transfers control to
addresDx80000080. This kernel exception handler lives there. See
kern/ arch/ nm ps/ m ps/ exception. S
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0S/161 User and Kernel Thread Stacks

application

stack || data code memory stack

thread library

CPU registers

Each OS/161 thread has two stacks, one that is used while the
thread is executing unprivileged application code, andrarahat
is used while the thread is executing privileged kernel code
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0S/161 MIPS Exception Handler (cont’d)

Theconmon_except i on code does the following:

1. allocates d@rap frame on the thread’s kernel stack and saves the user-level
application’s complete processor state (all registerggixkO and k1) into the
trap frame.

2. calls them ps_t r ap function to continue processing the exception.

3. whenm ps_t r ap returns, restores the application processor state from the
trap frame to the registers

4. issues MIP$ r andr f e (restore from exception) instructions to return
control to the application code. The instruction takes control back to
location specified by the application program counter whersyscal |
occurred, and thef e (which happens in the delay slot of the) restores the
processor to unprivileged mode
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0S/161 Trap Frame

application kernel

stack || data code memory stack

thread library

/

_H_ _H_ _H_ _H_ _H_ trap frame with saved

application state

CPU registers

While the kernel handles the system call, the applicati@Pt)
state is saved in a trap frame on the thread’s kernel stackthan
CPU registers are available to hold kernel execution state.
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m ps_t r ap: Handling System Calls, Exceptions, and Interrupts

e On the MIPS, the same exception handler is invoked to hadles calls,
exceptions and interrupts

e The hardware sets a code to indicate the reason (systemaption, or
interrupt) that the exception handler has been invoked

e OS/161 has a handler function corresponding to each of tleesens. The
m ps_t r ap function tests the reason code and calls the appropriateidumn
the system call handlen{ ps_syscal | ) in the case of a system call.

e M ps_trap can be found ikker n/ ar ch/ m ps/ m ps/trap. c.

Interrupts and exceptions will be presented shortly
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0S/161 MIPS System Call Handler

m ps_syscal | (struct trapframe *tf) {
assert (curspl ==0);
callno = tf->tf_v0; retval = 0;
switch (callno) {
case SYS reboot:
err = sys_reboot(tf->tf_a0); /* in kern/main/main.c =/
br eak;

[+ Add stuff here =*/

defaul t:
kprintf("Unknown syscall %\ n", callno);
err = ENOSYS;
br eak;

m ps_syscall checks the system call code and in-
vokes a handler for the indicated system call. See
kern/arch/ m ps/ m ps/syscall.c
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0S/161 MIPS System Call Return Handling

if (err) {
tf->tf _vO
tf->tf_a3
} else {
/= Success. =/
tf->tf_vO retval ;
tf->tf_a3 0; /* signal no error =*/

err;
1; /= signal an error */

/* Advance the PC, to avoid the syscall again. =/
tf->tf_epc += 4;

/= Make sure the syscall code didn't forget to |ower spl
assert (curspl ==0);

m ps_syscal | mustensure that the kernel adheres to the system

call return convention.
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Exceptions

e Exceptions are another way that control is transferred fgmocess to the
kernel.

e Exceptions are conditions that occur during the executf@nanstruction by
a process. For example, arithmetic overflows, illegal urdtons, or page
faults (to be discussed later).

e exceptions are detected by the hardware

e when an exception is detected, the hardware transfersotomia specific
address

e normally, a kernel exception handler is located at that eskir

Exception handling is similar to, but not identical to, systcall
handling. (What is different?)
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MIPS Exceptions

/= Syscall =*/

. / = Breakpoi nt =/

EX_RI 10 /| Reserved (illegal) instruction */
EX_CPU 11 / = Coprocessor unusable */

EX_OVF 12 [+ Arithmetic overflow =/

EX | RQ 0 /* Interrupt =*/
EX_MOD 1 /+ TLB Modify (wite to read-only page) =/
EX TLBL 2 [+ TLB mss on | oad */
EX TLBS 3 [+ TLB m ss on store =/
EX_ADEL 4 /+ Address error on |oad */
EX ADES 5 [+ Address error on store x/
EX | BE 6 [+ Bus error on instruction fetch =/
EX_DBE 7 /* Bus error on data |oad *or* store */
8
9

In OS/161,m ps_t r ap uses these codes to decide whether it has
been invoked because of an interrupt, a system call, or agpexc
tion.

CS350 Operating Systems Spring 2011

Processes and the Kernel 26

Interrupts (Revisited)

e Interrupts are a third mechanism by which control may besfianed to the
kernel

e Interrupts are similar to exceptions. However, they aresedly hardware
devices, not by the execution of a program. For example:

— anetwork interface may generate an interrupt when a netpacket
arrives

— adisk controller may generate an interrupt to indicate itias finished
writing data to the disk

— atimer may generate an interrupt to indicate that time hasquh
¢ Interrupt handling is similar to exception handling - centrexecution context

is saved, and control is transferred to a kernel interruptle at a fixed
address.
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Interrupts, Exceptions, and System Calls: Summary

e interrupts, exceptions and system calls are three mecharig which control
is transferred from an application program to the kernel

e when these events occur, the hardware switches the CPUriatieged mode
and transfers control to a predefined location, at which aeiéandler
should be located

¢ the handler saves the application thread context so thetimel code can be
executed on the CPU, and restores the application threddxtguast before
control is returned to the application
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Implementation of Processes

e The kernel maintains information about all of the processélse system in a
data structure often called the process table.

e Per-process information may include:
— process identifier and owner

— current process state and other scheduling information

lists of resources allocated to the process, such as open file

— accounting information

In OS/161, some process information (e.g., an address space
pointer) is kept in the hr ead structure. This works only because
each OS/161 process has a single thread.
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Implementing Timesharing

e whenever a system call, exception, or interrupt occurstrobis transferred
from the running program to the kernel

¢ at these points, the kernel has the ability to cause a coswétth from the
running process’ thread to another process’ thread

¢ notice that these context switches always occur while aga©ichread is
executing kernel code

By switching from one process’s thread to another process’s
thread, the kernel timeshares the processor among mutiple

cesses.
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Two Processes in 0S/161
application #1 kernel application #2
stack || data code stack stack stack|| data || code
trap frame for app #1 thread library

_ _ _ _ _ _ saved kernel thread
context for thread #1

CPU registers
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Timesharing Example (Part 1)

Process A Kernel Process B
” : B’s thread is
| system call : ready, not running
| or m.xomc:o: -
” or interrupt Sl
I return
! o _
P |
- |
ST Asthreadis v
) ready, not running
context switch
Kernel switches execution context to Process B.
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Timesharing Example (Part 2)

Process A Kernel Process B
, :
| :
| -
| :
| :
| Z
e B
-
! ~ - _____|_-.
- |
: ”
ch : system call |
context switc or exception ”
: or interrupt |
/ ”
| return e B’s thread is
” : ready, not running
\/ \]
Kernel switches execution context back to process A.
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Implementing Preemption

¢ the kernel uses interrupts from the system timer to meabkerpdssage of
time and to determine whether the running process’s quahaswexpired.

e atimer interrupt (like any other interrupt) transfers eohfrom the running
program to the kernel.

e this gives the kernel the opportunity to preempt the runtimgad and
dispatch a new one.
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Preemptive Multiprogramming Example

Process A Kernel Process B

timer interrupt

\\\\\\\\\\\\\\\\\\\ Key:

: A N I ready thread

\ T B running threac

context R S E e
switches : !
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System Calls for Process Management

Linux 0S/161
Creation fork,execv fork,execv
Destruction _exit,kill _exit
Synchronization wait,waitpid,pause, . waitpid
Attribute Mgmt || getpid,getuid,nice,getrusage, getpid

CS350 Operating Systems Spring 2011

Processes and the Kernel 36

The Process Model

¢ Although the general operations supported by the procésdane are
straightforward, there are some less obvious aspects oépsdehaviour that
must be defined by an operating system.

Process Initialization: When a new process is created, how is it initialized?
What is in the address space? What is the initial thread gtihi2oes it
have any other resources?

Multithreading: Are concurrent processes supported, or is each process
limited to a single thread?

Inter-Process Relationships: Are there relationships among processes, e.g,
parent/child? If so, what do these relationships mean?
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