Synchronization 1

Concurrency

e On multiprocessors, several threads can execute simaligaheone on each
processor.

e On uniprocessors, only one thread executes at a time. Hoyaeause of
preemption and timesharing, threads appear to run comtlyre

Concurrency and synchronization are important even onronip
Cessors.
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Thread Synchronization

e Concurrent threads can interact with each other in a vaoietyays:

— Threads share access, through the operating system, émsgsvices
(more on this later. .)

— Threads may share access to program data, e.g., globdlestia
e A common synchronization problem is to enforoatual exclusion, which

means making sure that only one thread at a time uses a shgest, @.g., a
variable or a device.

e The part of a program in which the shared object is access=ldiex] a
critical section.
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Critical Section Example (Part 1)

int listoremovefront(list *lp) {
| Nt num
| i st _el enent =*el enent:

assert (!is_enmpty(lp));

el ement = | p->first;

num = | p->first->item

I f (lp->first == |p->last) {
| p->first = | p->last = NULL;

} else {

| p->first = el enent->next;
! .
| p->num.in_|ist--;
free(el enent);
return num

Thel i st _renove_f ront function is a critical section. It may
not work properly if two threads call it at the same time on the
samd | st . (Why?)
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Critical Section Example (Part 2)

void |ist _append(list *=lp, int newitem {
|1 st _el enent *elenment = nall oc(sizeof (list_elenent));
el enent->item = new.item
assert(!is_inlist(lp, newitem);
if (isenpty(lp)) {
| p->first = elenent; |p->last = el enent;
} else {
| p- >l ast->next = elenent; |p->last = el enent;

}

| p- >numi n_| | st ++;

Thel i st _append function is part of the same critical section as
| 1 st _renove_front. It may not work properly if two threads
call it at the same time, or if a thread calls it while anothas h
calledl | st _renove_f r ont
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Enforcing Mutual Exclusion

e mutual exclusion algorithms ensure that only one threadiat@executes the
code in a critical section
e several techniques for enforcing mutual exclusion

— exploit special hardware-specific machine instructiorg, &st-and-set or
compare-and-swap, that are intended for this purpose

— use mutual exclusion algorithms, e.Beterson’s algorithm, that rely only
on atomic loads and stores

— control interrupts to ensure that threads are not preenvgidd they are
executing a critical section
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Disabling Interrupts

e On a uniprocessor, only one thread at a time is actually ngani

e If the running thread is executing a critical section, mbax&lusion may be
violated if

1. the running thread is preempted (or voluntarily yield®)levit is in the
critical section, and

2. the scheduler chooses a different thread to run, and énghread enters
the same critical section that the preempted thread was in

e Since preemption is caused by timer interrupts, mutualsxeh can be
enforced by disabling timer interrupts before a threadrerttee critical
section, and re-enabling them when the thread leaves tingatgection.

This is the way that the 0OS/161 kernel enforces mu-
tual exclusion. There is a simple interfacep( hi gh(),

spl 0O(), splx()) for disabling and enabling interrupts. See
kern/arch/ m ps/incl ude/ spl . h.
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Pros and Cons of Disabling Interrupts

e advantages:
— does not require any hardware-specific synchronizatidnucisons

— works for any number of concurrent threads

e disadvantages:

— Indiscriminate: prevents all preemption, not just preearpthat would
threaten the critical section

— Ignoring timer interrupts has side effects, e.g., kernaware of passage
of time. (Worse, OS/161’spl hi gh() disablesall interrupts, not just
timer interrupts.) Keep critical sectiossort to minimize these problems.

— will not enforce mutual exclusion on multiprocessors (Why?
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Peterson’s Mutual Exclusion Algorithm

[/ shared vari abl es */

/+* note: one flag array and turn variable */

[+ for each critical section x/

boolean flag[2]; /* shared, initially false */

| nt turn; [+ shared =*/
flag[i] = true; [ for one thread, :=0 and j=1 */
turn = j; [ for the other, i=1 and j=0 */

while (flag[j] & & turn ==j) { } [/* busy wait =/
critical section /[~ e.qg., call to list_renove_front =/

flag[i] = false;

Ensures mutual exclusion and avoids starvation, but wanksfor
two threads. (Why?)
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Synchronization

Hardware-Specific Synchronization Instructions

e atest-and-set instructiaiomically sets the value of a specified memory
location and either

— places that memory locationtd value into a register, or

— checks a condition against the memory location’s old vahgeracords the
result of the check in a register

e for presentation purposes, we will abstract such an instnuas a function
Test AndSet ( addr ess, val ue), which takes a memory location
(addr ess) and a value as parameters. It atomically ster@sue at the

memory location specified lgddr ess and returns the previous value stored
at that address
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A Spin Lock Using Test-And-Set

e a test-and-set instruction can be used to enforce mutuhls®n

e for each critical section, definelack variable
bool ean | ock; /=* shared, initially false */

We will use the lock variable to keep track of whether thera lsread in the
critical section, in which case the valuelabck will be t r ue

e before a thread can enter the critical section, it does thenfng:
whi |l e (Test AndSet (& ock,true)) { } [/* busy-wait =/

e When the thread leaves the critical section, it does

| ock = fal se:

¢ this enforces mutual exclusion (why?), but starvation issspbility

This construct is sometimes known aspan lock, since a thread
“spins” in the while loop until the critical section is fre8pin locks
are widely used on multiprocessors.
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Semaphores

e A semaphore is a synchronization primitive that can be useatorce mutual
exclusion requirements. It can also be used to solve othelslof
synchronization problems.

e A semaphore is an object that has an integer value, and thpbda two

operations:

P: if the semaphore value is greater tiamlecrement the value. Otherwise,
wait until the value is greater thanand then decrement it.

V. increment the value of the semaphore

e Two kinds of semaphores:
counting semaphores:can take on any non-negative value

binary semaphores: take on only the valuesand1. (V on a binary
semaphore with valug has no effect.)

By definition, theP andV operations of a semaphore atemic.
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0S/161 Semaphores

struct semaphore {
char *nane;
vol atile int count:

b

struct semaphore *semcreate(const char =*nane,
int initial _count);

void P(struct semaphore *);

void V(struct semaphore x);

void semdestroy(struct semaphore *);

see
e kern/include/synch. h

e kern/thread/synch. c
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Mutual Exclusion Using a Semaphore

struct semaphore *s;
s = semcreate("MySenml", 1); /* initial value is 1 */

P(s); /* do this before entering critical section x/

critical section /+x e.qg., call to list_renovefront =/

V(s); [+ do this after leaving critical section */
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Producer/Consumer Synchronization

e suppose we have threads that add items to a list (producettheeads that
remove items from the list (consumers)

e SuUppose we want to ensure that consumers do not consumdigittiseempty
- Instead they must wait until the list has something in it

e this requires synchronization between consumers and peoslu

e semaphores can provide the necessary synchronizationpoas n the next
slide
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Producer/Consumer Synchronization using Semaphores

struct semaphore *s;
s = semcreate("ltens", 0); /* initial value is 0 */

Producer’ s Pseudo- code:
add itemto the list (call |ist_append())
V(s);

Consuner’ s Pseudo- code:
P(s);
renove itemfromthe list (call list_renove_front())

The Items semaphore does not enforce mutual exclusion on the
list. If we want mutual exclusion, we can also use semaphiores
enforce it. (How?)
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Bounded Buffer Producer/Consumer Synchronization

e Suppose we add one more requirement: the number of items irstishould
not exceed\

e producers that try to add items when the list is full shoularzele to wait
until the list is no longer full

e \We can use an additional semaphore to enforce this new aartstr

— semaphor&ul | is used to enforce the constraint that producers should
not produce if the list is full

— semaphor&npt y is used to enforce the constraint that consumers should
not consume if the list is empty

struct semaphore xfull;
struct semaphore *enpty;
full = semcreate("Full", 0); [+ initial value = 0 */
enpty = semcreate("Enmpty", N); /+ initial value = N */
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Synchronization 17

Bounded Buffer Producer/Consumer Synchronization with Senaphores

Producer’ s Pseudo- code:
P(enpty);
add itemto the list (call Iist_append())
V(full);

Consuner’s Pseudo- code:
P(full);
renove itemfromthe list (call list_renove_front())
V(enmpty);
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Synchronization 18

0S/161 Semaphores: P()

voi d
P(struct semaphore *senj
U

I nt spl;

assert(sem!= NULL);

[ *
* May not block in an interrupt handler.
* For robustness, always check, even if we can actually
* conplete the P wthout bl ocking.
* |
assert (i n_i nterrupt==0);

spl = spl high();

whi l e (sem >count==0) {
t hread_sl eep(sem;

}

assert (sem >count >0) ;

sem >count - - ;

spl x(spl);
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Thread Blocking

e Sometimes a thread will need to wait for an event. One examme the
previous slide: a thread that attempts a P() operation oncavatued
semaphore must wait until the semaphore’s value becomés/pos

e other examples that we will see later on:

— walit for data from a (relatively) slow device
— wait for input from a keyboard
— walit for busy device to become idle

e In these circumstances, we do not want the thread to rure gicannot do
anything useful.

e To handle this, the thread scheduler dbock threads.
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Thread Blocking in OS/161

e OS/161 thread library functions:

—void thread_sl eep(const void xaddr)
x blocks the calling thread on addresddr

— voi d thread.wakeup(const void xaddr)
x unblock threads that are sleeping on addessdr

e t hread_sl eep() is much liket hr ead_yi el d() . The calling thread
voluntarily gives up the CPU, the scheduler chooses a nexathto run, and
dispatches the new thread. However

— after at hr ead_yi el d() , the calling thread iseady to run again as
soon as it is chosen by the scheduler

— after at hr ead_sl eep( ), the calling thread is blocked, and should not
be scheduled to run again until after it has been explictilglocked by a
call tot hr ead_wakeup() .
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Thread States

e avery simple thread state transition diagram

guantum expires
or thread_yield()

dispatch

got resource or event need resource or event

(thread_wakeup()) (thread_sleep())
blocked

e the states:
running: currently executing
ready: ready to execute

blocked: waiting for something, so not ready to execute.
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0S/161 Semaphores: V() kern/thread/synch.c

voi d
V(struct semaphore *sem
{
I nt spl;
assert(sem!= NULL);
spl = spl high();
sem >count ++;
assert (sem >count >0);
t hr ead_wakeup(sen;

spl x(spl);
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Synchronization 23

0S/161 Locks

e OS/161 also uses a synchronization primitive calléock Locks are
Intended to be used to enforce mutual exclusion.

struct lock »nylock = | ock_create("LockName");

| ock_aqui re(nyl ock) ;
critical section /+x e.qg., call to list_renove_front =/
| ock_r el ease( nyl ock) ;

e Alock is similar to a binary semaphore with an initial valuelo However,
locks also enforce an additional constraint: the threatrlaases a lock
must be the same thread that most recently acquired it.

e The system enforces this additional constraint to helprenat locks are
used as intended.
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Synchronization 24

Condition Variables

e OS/161 supports another common synchronization primiteedition
variables

e each condition variable is intended to work together witbhcki condition
variables are only useidom within the critical section that is protected by the
lock

e three operations are possible on a condition variable:

wait: this causes the calling thread to block, and it releasesthie |
associated with the condition variable

signal: if threads are blocked on the signaled condition variablentone of
those threads is unblocked

broadcast: like signal, but unblocks all threads that are blocked on the
condition variable
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Using Condition Variables

e Condition variables get their name because they allow tisréawait for
arbitrary conditions to become true inside of a criticaltsac

e Normally, each condition variable corresponds to a padroccondition that is
of interest to an application. For example, in the bounddtébu
producer/consumer example on the following slides, thedaralitions are:

— count > 0 (condition variablenot enpt y)
— count < N (condition variablenot f ul | )

e when a condition is not true, a thread asa t on the corresponding
condition variable until it becomes true

e when a thread detects that a condition it true, it t|megnal orbr oadcast
to notify any threads that may be waiting

Note that signalling (or broadcasting to) a condition aleathat
has no waiters ha® effect. Signals do not accumulate.
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Waiting on Condition Variables

e when a blocked thread is unblocked ygnal orbr oadcast), it
reacquires the lock before returning from thei t call

e athread is in the critical section when it calai t , and it will be in the
critical section whemai t returns. However, in between the call and the
return, while the caller is blocked, the caller is out of théical section, and
other threads may enter.

e In particular, the thread that cads gnal (or br oadcast ) to wake up the
waiting thread will itself be in the critical section whersignals. The waiting
thread will have to wait (at least) until the signaller raeathe lock before it
can unblock and return from tivai t call.

This describes Mesa-style condition variables, which a&edun
OS/161. There are alternative condition variable semsitioare
semantics), which differ from the semantics described.here
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Bounded Buffer Producer Using Condition Variables

Int count = 0; /* nust initially be 0 */
struct | ock *mutex; [+ for mutual exclusion */
struct cv *notfull, *notenpty; /* condition variables */

[+ Initialization Note: the |lock and cv's nust be created
* using |lock.create() and cv.create() before Produce()
* and Consune() are called */

Produce(item {
| ock_acqui r e( mut ex) ;
while (count == N {
cvwait(notfull, nutex);
}

add itemto buffer (call Iist_append())
count = count + 1;

cv_si gnal (notenpty, mnutex);

| ock_r el ease( nmut ex) ;

}
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Bounded Buffer Consumer Using Condition Variables

Consune() {
| ock_acqui r e( mut ex) ;
while (count == 0) {
cvwai t (notenpty, nutex);

i

renove itemfrombuffer (call list_renovefront())
count = count - 1;

cv_signal (notfull, nutex);

| ock_r el ease( nmut ex) ;

}

Both Produce() and Consume() call_aait() inside of anwhi | e
loop. Why?
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Monitors

e Condition variables are derived fromonitors. A monitor is a programming
language construct that provides synchronized accessateddata. Monitors
have appeared in many languages, e.g., Ada, Mesa, Java

e a monitor is essentially an object with special concurreseyantics

e it IS an object, meaning
— It has data elements
— the data elements are encapsulated by a set of methods, avkitine only
functions that directly access the object’s data elements
e only one monitor method may be active at a time, i.e., the monitor wath
(together) form a critical section
— If two threads attempt to execute methods at the same tineeywdinbe
blocked until the other finishes

e inside a monitor, so callecbndition variables can be declared and used
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Monitors in OS/161

e The C language, in which OS/161 is written, does not supportitars.

e However, programming convention and OS/161 locks and ¢iomdvariables
can be used to provide monitor-like behavior for sharedddatata structures:
— define a C structure to implement the object’s data elements

— define a set of C functions to manipulate that structure ¢laes the object
“methods”)

— ensure that only those functions directly manipulate thectiire
— create an OS/161 lock to enforce mutual exclusion

— ensure that each access method acquires the lock whertstaatalr
releases the lock when it finishes

— if desired, define one or more condition variables and ugm thghin the
methods.
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Deadlocks

e Suppose there are two threads and two lockgk A andl ockB, both
initially unlocked.

e Suppose the following sequence of events occurs
1. Thread 1 doesock_acqui re(l ockA).
2. Thread 2 doesock_acqui re(| ockB).

3. Thread 1 doeksock_acqui re(l| ockB) and blocks, becauseockB is
held by thread 2.

4. Thread 2 doekock_acqui re(| ockA) and blocks, becauseockA s
held by thread 1.

These two threads ardeadlocked - neither thread can make
progress. Waiting will not resolve the deadlock. The thseack
permanently stuck.
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Deadlocks (Another Simple Example)

e Suppose a machine hé$ MB of memory. The following sequence of events
occurs.

1. ThreadA starts, requestd) MB of memory.
2. ThreadB starts, also requess® MB of memory.

3. ThreadA requests an addition&8lMB of memory. The kernel blocks
threadA since there is onl¢ MB of available memory.

4. ThreadB requests an additionalMB of memory. The kernel blocks
threadB since there is not enough memory available.

These two threads are deadlocked.
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Resource Allocation Graph (Example)

R1 R2

R3
o | a9l |0
) () (r
resource requeél\ /!esource allocation

R4 R5

Is there a deadlock in this system?
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Resource Allocation Graph (Another Example)

R1 R3

o | eoe o

W Y

T1 T2 T3

\ /
¢ || o

R4 R5

Is there a deadlock in this system?
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Deadlock Prevention

No Hold and Wait: prevent a thread from requesting resources if it currerdl/ h
resources allocated to it. A thread may hold several ressutmt to do so it
must make a single request for all of them.

Resource Ordering: Order (e.g., number) the resource types, and require that
each thread acquire resources in increasing resource tgipe d hat is, a
thread may make no requests for resources of type less tlexqual to; if it
IS holding resources of type
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Deadlock Detection and Recovery

e main idea: the system maintains the resource allocatigrhgrad tests it to
determine whether there is a deadlock. If there is, the Bysteist recover

from the deadlock situation.

e deadlock recovery is usually accomplished by terminatimg @ more of the
threads involved in the deadlock

e When to test for deadlocks? Can test on every blocked resoaquest, or can
simply test periodically. Deadlocks persist, so perioditedtion will not
“miss” them.

Deadlock detection and deadlock recovery are both costtys T
approach makes sense only if deadlocks are expected torke inf

quent.
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Detecting Deadlock in a Resource Allocation Graph

e System State Notation:
— D,: demand vector for thredt;
— A, current allocation vector for thread

— U: unallocated (available) resource vector

e Additional Algorithm Notation:
— R: scratch resource vector

— fi: algorithm is finished with thread;? (boolean)
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Detecting Deadlock (cont’d)
[+ Iinitialization */
R = U
for all 4, f;,= false
/= can each thread finish? */
while 3 (= fi A (Di < R)) {
R = R + A,
fi = true
}
[+ 1 f not, there is a deadl ock =/
If 44 ( = f; ) then report deadl ock
el se report no deadl ock
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Deadlock Detection, Positive Example

R1

Dy = (0,1,0,0,0)
Dy = (0,0,0,0,1) ® Q? ® }
D= 010,00 WA AN
e A =(1,0,0,0,0) T1
Ay = (0,2,0,0,0) resource reque&\ /r’esource allocation
As = (0,1,1,0,1) ® ‘
o U=1(0,0,1,1,0) - —

The deadlock detection algorithm will terminate wih
fo == f3 ==Tfal se, so this system is deadlocked.
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Deadlock Detection, Negative Example

R1 R3

0,1,0,0,0

1,0,0,0,0 ﬂ ’ ’ ’
0,0,0,0,0 \‘ \i /

( )
( )
( )
(1,0,0,1,0) T1 T2 T3
( )
( )

0,2,1,0,0 \ /4
0,1,1,0,1 ‘ ‘

e U=(0,0,0,0,0)
R4 R5

Dy
D5
o Ds
Ay
A
As

This system is not in deadlock. It is possible that the thsemil
run to completion in the ordéks, 17, T5.
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