Processor Scheduling 1

The Nature of Program Executions

e A running thread can be modeled as alternating seri€¥f burstsandl|/O
bursts

— during a CPU burst, a thread is executing instructions

— during an I/O burst, a thread is waiting for an I/O operatiohé
performed and is not executing instructions

CS350 Operating Systems Spring 2012

Processor Scheduling 2

Preemptive vs. Non-Preemptive

e A non-preemptive scheduler runs only when the running thread gives up the
processor through its own actions, e.g.,

— the thread terminates
— the thread blocks because of an I/O or synchronization tipara
— the thread performs a Yield system call (if one is providedh®yoperating
system)
e A preemptive scheduler may, in addition, force a running thread to stop

running

— typically, a preemptive scheduler will be invoked periadig by a timer
Interrupt handler, as well as in the circumstances listeyab

— arunning thread that is preempted is moved to the ready state

CS350 Operating Systems Spring 2012

Processor Scheduling 3

FCFS and Round-Robin Scheduling

First-Come, First-Served (FCFS):
e non-preemptive - each thread runs until it blocks or terteiga

e FIFO ready queue
Round-Robin:

e preemptive version of FCFS

e running thread is preempted after a fixed time quantum, s ot
already blocked

e preempted thread goes to the end of the FIFO ready queue

CS350 Operating Systems Spring 2012

Processor Scheduling 4

Shortest Job First (SJF) Scheduling

e Non-preemptive

e ready threads are scheduled according to the length ofribgirCPU burst -
thread with the shortest burst goes first

e SJF minimizes average waiting time, but can lead to stamvati

e SJF requires knowledge of CPU burst lengths

— Simplest approach is to estimate next burst length of eaeladbased on
previous burst length(s). For example, exponential awecagsiders all
previous burst lengths, but weights recent ones most lyeauvil

Bi—i—l = Oébz' + (1 - Oé)Bz

whereB,; Is the predicted length of thgh CPU burst, and,; is its actual
length, and) < a < 1.

e Shortest Remaining Time First is a preemptive variant of Bd&emption
may occur when a new thread enters the ready queue.

CS350 Operating Systems Spring 2012

Processor Scheduling 5

FCFS Gantt Chart Example

Pa

Pd

> time

0 4 8 12 16 20
Initial ready queue: Pa=5 Pb=38 Pc=3
Thread Pd (=2) "arrives" at time 5

CS350 Operating Systems Spring 2012

Processor Scheduling 6

Round Robin Example

Pa

Pd

> time

0 4 8 12 16 20
Initial ready queue: Pa=5 Pb=38 Pc=3
Thread Pd (=2) "arrives" at time 5 Quantum = 2

CS350 Operating Systems Spring 2012

Processor Scheduling 7

SJF Example

Pa
Pc—
Pd
; ; ; i 1 1 : : : : = time
0 4 8 12 16 20

Initial ready queue: Pa=5 Pb=38 Pc=3
Thread Pd (=2) "arrives" at time 5

CS350 Operating Systems Spring 2012

Processor Scheduling 8

SRTF Example

Pa
Pc—
Pd
; ; ; i 1 1 : : : : = time
0 4 8 12 16 20

Initial ready queue: Pa=5 Pb=38 Pc=3
Thread Pd (=2) "arrives" at time 5

CS350 Operating Systems Spring 2012

Processor Scheduling 9

Highest Response Ratio Next

e non-preemptive

e response ratio is defined for each ready thread as:

w+ b

b
whereb is the estimated CPU burst time ands the actual waiting time

e scheduler chooses the thread with the highest responedchtiose smallest
b in case of a tie)

e HRRN is an example of a heuristic that blends SJF and FCFS

CS350 Operating Systems Spring 2012

Processor Scheduling

10

HRRN Example

Pa
Pb _
Pc —
Pd
. > tlme
0 4 8 12 16 20
Initial ready queue: Pa=5 Pb=38 Pc=3
Thread Pd (=4) "arrives" at time 5
CS350 Operating Systems Spring 2012

Processor Scheduling 11

Prioritization

e a scheduler may be asked to take process or thread priontoeaccount

e for example, priorities could be based on
— user classification
— application classification
— application specification
(e.g., Linuxset priority/sched_set schedul er)
e scheduler can:
— always choose higher priority threads over lower priofiiretds
— use any scheduling heuristic to schedule threads of equaaitpr
e low priority threads risk starvation. If this is not desiyegheduler must have

a mechanism for elevating the priority of low priority thdsathat have waited
a long time

CS350 Operating Systems Spring 2012

Processor Scheduling 12

Multilevel Feedback Queues

e Qives priority to interactive threads (those with short Chtiusts)
e scheduler maintains several ready queues

e scheduler never chooses a thread in ready quédubere are threads in any
ready queug < i.

o threads in ready queuaise quantung;, andg; < ¢, if i < j
e newly ready threads go into ready quéue

e alevel: thread that is preempted goes into the levell ready queue

CS350 Operating Systems Spring 2012

Processor Scheduling 13

3 Level Feedback Queue State Diagram

i \

unblock

—
dispatch

preempt

CS350 Operating Systems Spring 2012

Processor Scheduling 14

Suspending Processes

e suspension prevents a process from running for an exteretemtof time,
until the kernel decides taesume it.

e usually because a resource, especially memory, is ovextbad
e kernel releases suspended process’s resources (e.g.yyiemo

e Operating system may also provide mechanisms for apicabr users to
reguest suspension/resumption of processes

CS350 Operating Systems Spring 2012

Processor Scheduling 15

Scheduling States Including Suspend/Resume

suspended/

suspend ready

resume suspend

guantum expires

running

dispatch

suspend

blocked

resume

suspended/
blocked

CS350

Operating Systems Spring 2012

