
CS 350

Operating Systems

Course Notes (Part 1)

Spring 2014

David R. Cheriton

School of Computer Science

University of Waterloo

Intro 1

What is an Operating System?

• Three views of an operating system

Application View: what services does it provide?

System View: what problems does it solve?

Implementation View: how is it built?

An operating system is part cop, part facilitator.

CS350 Operating Systems Spring 2014

Intro 2

Application View of an Operating System

• The OS provides an execution environment for running programs.

– The execution environment provides a program with the processor time and

memory space that it needs to run.

– The execution environment provides interfaces through which a program can

use networks, storage, I/O devices, and other system hardware components.

∗ Interfaces provide a simplified, abstract view of hardware to application

programs.

– The execution environment isolates running programs from one another and

prevents undesirable interactions among them.

CS350 Operating Systems Spring 2014

Intro 3

Other Views of an Operating System

System View: The OS manages the hardware resources of a computer system.

• Resources include processors, memory, disks and other storage devices,

network interfaces, I/O devices such as keyboards, mice and monitors, and

so on.

• The operating system allocates resources among running programs. It

controls the sharing of resources among programs.

• The OS itself also uses resources, which it must share with application

programs.

Implementation View: The OS is a concurrent, real-time program.

• Concurrency arises naturally in an OS when it supports concurrent

applications, and because it must interact directly with the hardware.

• Hardware interactions also impose timing constraints.

CS350 Operating Systems Spring 2014

Intro 4

The Operating System and the Kernel

• Some terminology:

kernel: The operating system kernel is the part of the operating system that

responds to system calls, interrupts and exceptions.

operating system: The operating system as a whole includes the kernel, and

may include other related programs that provide services for applications.

This may include things like:

– utility programs

– command interpreters

– programming libraries

CS350 Operating Systems Spring 2014

Intro 5

Schematic View of an Operating System

data and interruptscommands

system calls system call

and data

results

Resources

User Programs

system call interface

kernel

user−space

Kernel

Operating System

CS350 Operating Systems Spring 2014

Intro 6

Operating System Abstractions

• The execution environment provided by the OS includes a variety of abstract

entities that can be manipulated by a running program. Examples:

files and file systems: abstract view of secondary storage

address spaces: abstract view of primary memory

processes, threads: abstract view of program execution

sockets, pipes: abstract view of network or other message channels

• This course will cover

– why these abstractions are designed the way they are

– how these abstractions are manipulated by application programs

– how these abstractions are implemented by the OS

CS350 Operating Systems Spring 2014

Intro 7

Course Outline

• Introduction

• Threads and Concurrency

• Synchronization

• Processes and the Kernel

• Virtual Memory

• Scheduling

• Devices and Device Management

• File Systems

• Interprocess Communication and Networking (time permitting)

CS350 Operating Systems Spring 2014

Threads and Concurrency 1

Review: Program Execution

• Registers

– program counter, stack pointer, . . .

• Memory

– program code

– program data

– program stack containing procedure activation records

• CPU

– fetches and executes instructions

CS350 Operating Systems Spring 2014

Threads and Concurrency 2

What is a Thread?

• A thread represents the control state of an executing program.

• A thread has an associated context (or state), which consists of

– the processor’s CPU state, including the values of the program counter (PC),

the stack pointer, other registers, and the execution mode

(privileged/non-privileged)

– a stack, which is located in the address space of the thread’s process

Imagine that you would like to suspend the program execution, and resume

it again later. Think of the thread context as the information you would

need in order to restart program execution from where it left off when it was

suspended.

CS350 Operating Systems Spring 2014

Threads and Concurrency 3

Thread Context

memory

CPU registers

codedatastack

thread context

CS350 Operating Systems Spring 2014

Threads and Concurrency 4

Concurrent Threads

• more than one thread may exist simultaneously (why might this be a good

idea?)

• each thread has its own context, though they share access to program code and

data

• on a uniprocessor (one CPU), at most one thread is actually executing at any

time. The others are paused, waiting to resume execution.

• on a multiprocessor, multiple threads may execute at the same time, but if there

are more threads than processors then some threads will be paused and waiting

CS350 Operating Systems Spring 2014

Threads and Concurrency 5

Two Threads, One Running

memory

CPU registers

codedatastack 1 stack 2

thread library

thread 2 context (waiting thread)

thread 1 context (running thread)

CS350 Operating Systems Spring 2014

Threads and Concurrency 6

Thread Interface (Partial), With OS/161 Examples

• a thread library implements threads

• thread library provides a thread interface, used by program code to manipulate

threads

• common thread interface functions include

– create new thread

int thread_fork(const char *name, struct proc *proc,

void (*func)(void *, unsigned long),

void *data1, unsigned long data2);

– end (and destroy) the current thread

void thread_exit(void);

– cause current thread to yield (to be discussed later)

void thread_yield(void);

• see kern/include/thread.h

CS350 Operating Systems Spring 2014

Threads and Concurrency 7

Example: Creating Threads Using thread fork()

/* From kern/synchprobs/catmouse.c */

for (index = 0; index < NumMice; index++) {

error = thread_fork("mouse_simulation thread",

NULL, mouse_simulation, NULL, index);

if (error) {

panic("mouse_simulation: thread_fork failed: %s\n",

strerror(error));

}

}

/* wait for all of the cats and mice to finish */

for(i=0;i<(NumCats+NumMice);i++) {

P(CatMouseWait);

}

CS350 Operating Systems Spring 2014

Threads and Concurrency 8

Example: Concurrent Mouse Simulation Threads

static void mouse_simulation(void * unusedpointer,

unsigned long mousenumber)

{

int i; unsigned int bowl;

for(i=0;i<NumLoops;i++) {

/* for now, this mouse chooses a random bowl from

* which to eat, and it is not synchronized with

* other cats and mice

*/

/* legal bowl numbers range from 1 to NumBowls */

bowl = ((unsigned int)random() % NumBowls) + 1;

mouse_eat(bowl);

}

/* indicate that this mouse is finished */

V(CatMouseWait);

/* implicit thread_exit() on return from this function */

}

CS350 Operating Systems Spring 2014

Threads and Concurrency 9

Context Switch, Scheduling, and Dispatching

• the act of pausing the execution of one thread and resuming the execution of

another is called a (thread) context switch

• what happens during a context switch?

1. decide which thread will run next

2. save the context of the currently running thread

3. restore the context of the thread that is to run next

• the act of saving the context of the current thread and installing the context of

the next thread to run is called dispatching (the next thread)

• sounds simple, but . . .

– architecture-specific implementation

– thread must save/restore its context carefully, since thread execution

continuously changes the context

– can be tricky to understand (at what point does a thread actually stop? what

is it executing when it resumes?)

CS350 Operating Systems Spring 2014

Threads and Concurrency 10

Scheduling

• scheduling means deciding which thread should run next

• scheduling is implemented by a scheduler, which is part of the thread library

• simple round robin scheduling:

– scheduler maintains a queue of threads, often called the ready queue

– the first thread in the ready queue is the running thread

– on a context switch the running thread is moved to the end of the ready

queue, and new first thread is allowed to run

– newly created threads are placed at the end of the ready queue

• more on scheduling later . . .

CS350 Operating Systems Spring 2014

Threads and Concurrency 11

Causes of Context Switches

• a call to thread yield by a running thread

– running thread voluntarily allows other threads to run

– yielding thread remains runnable, and on the ready queue

• a call to thread exit by a running thread

– running thread is terminated

• running thread blocks, via a call to wchan sleep

– thread is no longer runnable, moves off of the ready queue and into a wait

channel

– more on this later . . .

• running thread is preempted

– running thread involuntarily stops running

– remains runnable, and on the ready queue

CS350 Operating Systems Spring 2014

Threads and Concurrency 12

Preemption

• without preemption, a running thread could potentially run forever, without

yielding, blocking, or exiting

• to ensure fair access to the CPU for all threads, the thread library may preempt

a running thread

• to implement preemption, the thread library must have a means of “getting

control” (causing thread library code to be executed) even though the running

thread has not called a thread library function

• this is normally accomplished using interrupts

CS350 Operating Systems Spring 2014

Threads and Concurrency 13

Review: Interrupts

• an interrupt is an event that occurs during the execution of a program

• interrupts are caused by system devices (hardware), e.g., a timer, a disk

controller, a network interface

• when an interrupt occurs, the hardware automatically transfers control to a fixed

location in memory

• at that memory location, the thread library places a procedure called an

interrupt handler

• the interrupt handler normally:

1. saves the current thread context (in OS/161, this is saved in a trap frame on

the current thread’s stack)

2. determines which device caused the interrupt and performs device-specific

processing

3. restores the saved thread context and resumes execution in that context

where it left off at the time of the interrupt.

CS350 Operating Systems Spring 2014

Threads and Concurrency 14

Preemptive Round-Robin Scheduling

• In preemptive round-robin scheduling, the thread library imposes a limit on the

amound of time that a thread can run before being preempted

• the amount of time that a thread is allocated is called the scheduling quantum

• when the running thread’s quantum expires, it is preempted and moved to the

back of the ready queue. The thread at the front of the ready queue is

dispatched and allowed to run.

• the quantum is an upper bound on the amount of time that a thread can run once

it has been dispatched

• the dispatched thread may run for less than the scheduling quantum if it yields,

exits, or blocks before its quantum expires

CS350 Operating Systems Spring 2014

Threads and Concurrency 15

Implementing Preemptive Scheduling

• suppose that the system timer generates an interrupt every t time units, e.g.,

once every millisecond

• suppose that the thread library wants to use a scheduling quantum q = 500t,

i.e., it will preempt a thread after half a second of execution

• to implement this, the thread library can maintain a variable called

running time to track how long the current thread has been running:

– when a thread is intially dispatched, running time is set to zero

– when an interrupt occurs, the timer-specific part of the interrupt handler can

increment running time and then test its value

∗ if running time is less than q, the interrupt handler simply returns and

the running thread resumes its execution

∗ if running time is equal to q, then the interrupt handler invokes

thread yield to cause a context switch

CS350 Operating Systems Spring 2014

Threads and Concurrency 16

OS/161 Thread Stack after Voluntary Context Switch (thread yield())

stack growth

application
stack frame(s)

stack frame
thread_yield()

saved thread context

thread_switch
stack frame

(switchframe)

CS350 Operating Systems Spring 2014

Threads and Concurrency 17

OS/161 Thread Stack after Preemption

stack growth

thread_switch()
stack frame

(switchframe)

application
stack frame(s)

stack frame

interrupt handling
stack frame(s)

thread_yield()

trap frame

saved thread context

CS350 Operating Systems Spring 2014

Threads and Concurrency 18

Implementing Threads

• the thread library is responsibile for implementing threads

• the thread library stores threads’ contexts (or pointers to the threads’ contexts)

when they are not running

• the data structure used by the thread library to store a thread context is

sometimes called a thread control block

In the OS/161 kernel’s thread implementation, thread contexts are stored in

thread structures.

CS350 Operating Systems Spring 2014

Threads and Concurrency 19

The OS/161 thread Structure

/* see kern/include/thread.h */

struct thread {

char *t_name; /* Name of this thread */

const char *t_wchan_name; /* Wait channel name, if sleeping */

threadstate_t t_state; /* State this thread is in */

/* Thread subsystem internal fields. */

struct thread_machdep t_machdep; /* Any machine-dependent goo */

struct threadlistnode t_listnode; /* run/sleep/zombie lists */

void *t_stack; /* Kernel-level stack */

struct switchframe *t_context; /* Register context (on stack) */

struct cpu *t_cpu; /* CPU thread runs on */

struct proc *t_proc; /* Process thread belongs to */

...

CS350 Operating Systems Spring 2014

Threads and Concurrency 20

Review: MIPS Register Usage

R0, zero = ## zero (always returns 0)

R1, at = ## reserved for use by assembler

R2, v0 = ## return value / system call number

R3, v1 = ## return value

R4, a0 = ## 1st argument (to subroutine)

R5, a1 = ## 2nd argument

R6, a2 = ## 3rd argument

R7, a3 = ## 4th argument

CS350 Operating Systems Spring 2014

Threads and Concurrency 21

Review: MIPS Register Usage

R08-R15, t0-t7 = ## temps (not preserved by subroutines)

R24-R25, t8-t9 = ## temps (not preserved by subroutines)

can be used without saving

R16-R23, s0-s7 = ## preserved by subroutines

save before using,

restore before return

R26-27, k0-k1 = ## reserved for interrupt handler

R28, gp = ## global pointer

(for easy access to some variables)

R29, sp = ## stack pointer

R30, s8/fp = ## 9th subroutine reg / frame pointer

R31, ra = ## return addr (used by jal)

CS350 Operating Systems Spring 2014

Threads and Concurrency 22

Dispatching on the MIPS (1 of 2)

/* See kern/arch/mips/thread/switch.S */

switchframe_switch:

/* a0: address of switchframe pointer of old thread. */

/* a1: address of switchframe pointer of new thread. */

/* Allocate stack space for saving 10 registers. 10*4 = 40 */

addi sp, sp, -40

sw ra, 36(sp) /* Save the registers */

sw gp, 32(sp)

sw s8, 28(sp)

sw s6, 24(sp)

sw s5, 20(sp)

sw s4, 16(sp)

sw s3, 12(sp)

sw s2, 8(sp)

sw s1, 4(sp)

sw s0, 0(sp)

/* Store the old stack pointer in the old thread */

sw sp, 0(a0)

CS350 Operating Systems Spring 2014

Threads and Concurrency 23

Dispatching on the MIPS (2 of 2)

/* Get the new stack pointer from the new thread */

lw sp, 0(a1)

nop /* delay slot for load */

/* Now, restore the registers */

lw s0, 0(sp)

lw s1, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)

lw s4, 16(sp)

lw s5, 20(sp)

lw s6, 24(sp)

lw s8, 28(sp)

lw gp, 32(sp)

lw ra, 36(sp)

nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 40 /* in delay slot */

.end switchframe_switch

CS350 Operating Systems Spring 2014

Threads and Concurrency 24

Dispatching on the MIPS (Notes)

• Not all of the registers are saved during a context switch

• This is because the context switch code is reached via a call to

thread switch and by convention on the MIPS not all of the registers are

required to be preserved across subroutine calls

• thus, after a call to switchframe switch returns, the caller

(thread switch) does not expect all registers to have the same values as

they had before the call - to save time, those registers are not preserved by the

switch

• if the caller wants to reuse those registers it must save and restore them

CS350 Operating Systems Spring 2014

Synchronization 1

Concurrency

• On multiprocessors, several threads can execute simultaneously, one on each

processor.

• On uniprocessors, only one thread executes at a time. However, because of

preemption and timesharing, threads appear to run concurrently.

Concurrency and synchronization are important even on uniprocessors.

CS350 Operating Systems Spring 2014

Synchronization 2

Thread Synchronization

• Concurrent threads can interact with each other in a variety of ways:

– Threads share access, through the operating system, to system devices (more

on this later . . .)

– Threads may share access to program data, e.g., global variables.

• A common synchronization problem is to enforce mutual exclusion, which

means making sure that only one thread at a time uses a shared object, e.g., a

variable or a device.

• The part of a program in which the shared object is accessed is called a critical

section.

CS350 Operating Systems Spring 2014

Synchronization 3

Critical Section Example (Part 0)

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

total++; total--;

} }

} }

If one thread executes add and another executes sub what is the value of

total when they have finished?

CS350 Operating Systems Spring 2014

Synchronization 4

Critical Section Example (Part 0)

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

lw R9 0(R8) lw R11 0(R10)

add R9 1 sub R11 1

sw R9 0(R8) sw R11 0(R10)

} }

} }

CS350 Operating Systems Spring 2014

Synchronization 5

Critical Section Example (Part 0)

Thread 1 Thread 2

loadaddr R8 total

lw R9 0(R8) R9=0

add R9 1 R9=1

<INTERRUPT>

loadaddr R10 total

lw R11 0(R10) R11=0

sub R11 1 R11=-1

sw R11 0(R10) total=-1

<INTERRUPT>

sw R9 0(R8) total=1

One possible order of execution.

CS350 Operating Systems Spring 2014

Synchronization 6

Critical Section Example (Part 0)

Thread 1 Thread 2

loadaddr R8 total

lw R9 0(R8) R9=0

<INTERRUPT>

loadaddr R10 total

lw R11 0(R10) R11=0

<INTERRUPT>

add R9 1 R9=1

sw R9 0(R8) total=1

<INTERRUPT>

sub R11 1 R11=-1

sw R11 0(R10) total=-1

Another possible order of execution. Many interleavings of instructions are

possible. Synchronization is required to ensure a correct ordering.

CS350 Operating Systems Spring 2014

Synchronization 7

The use of volatile

/* What if we DO NOT use volatile */

int --------volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

lw R9 0(R8) lw R11 0(R10)

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

add R9 1 sub R11 1

} }

sw R9 0(R8) sw R11 0(R10)

} }

Without volatile the compiler could optimize the code. If one thread executes

add and another executes sub, what is the value of total when they have

finished?

CS350 Operating Systems Spring 2014

Synchronization 8

The use of volatile

/* What if we DO NOT use volatile */

int --------volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

lw R9 0(R8) lw R11 0(R10)

add R9 N sub R11 N

sw R9 0(R8) sw R11 0(R10)

} }

The compiler could aggressively optimize the code., Volatile tells the com-

piler that the object may change for reasons which cannot be determined

from the local code (e.g., due to interaction with a device or because of an-

other thread).

CS350 Operating Systems Spring 2014

Synchronization 9

The use of volatile

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {

loadaddr R8 total loadaddr R10 total

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

lw R9 0(R8) lw R11 0(R10)

add R9 1 sub R11 1

sw R9 0(R8) sw R11 0(R10)

} }

} }

The volatile declaration forces the compiler to load and store the value on

every use. Using volatile is necessary but not sufficient for correct behaviour.

Mutual exclusion is also required to ensure a correct ordering of instructions.

CS350 Operating Systems Spring 2014

Synchronization 10

Ensuring Correctness with Multiple Threads

/* Note the use of volatile */

int volatile total = 0;

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

Allow one thread to execute and make others wait

total++; total--;

Permit one waiting thread to continue execution

} }

} }

Threads must enforce mutual exclusion.

CS350 Operating Systems Spring 2014

Synchronization 11

Another Critical Section Example (Part 1)

int list remove front(list *lp) {
int num;

list element *element;

assert(!is empty(lp));

element = lp->first;

num = lp->first->item;

if (lp->first == lp->last) {
lp->first = lp->last = NULL;

} else {
lp->first = element->next;

}
lp->num_in_list--;

free(element);

return num;

}

The list remove front function is a critical section. It may not work

properly if two threads call it at the same time on the same list. (Why?)

CS350 Operating Systems Spring 2014

Synchronization 12

Another Critical Section Example (Part 2)

void list append(list *lp, int new item) {

list element *element = malloc(sizeof(list element));

element->item = new item

assert(!is in list(lp, new item));

if (is empty(lp)) {

lp->first = element; lp->last = element;

} else {

lp->last->next = element; lp->last = element;

}

lp->num in list++;

}

The list append function is part of the same critical section as

list remove front. It may not work properly if two threads call

it at the same time, or if a thread calls it while another has called

list remove front

CS350 Operating Systems Spring 2014

Synchronization 13

Enforcing Mutual Exclusion

• mutual exclusion algorithms ensure that only one thread at a time executes the

code in a critical section

• several techniques for enforcing mutual exclusion

– exploit special hardware-specific machine instructions, e.g.,

∗ test-and-set,

∗ compare-and-swap, or

∗ load-link / store-conditional,

that are intended for this purpose

– control interrupts to ensure that threads are not preempted while they are

executing a critical section

CS350 Operating Systems Spring 2014

Synchronization 14

Disabling Interrupts

• On a uniprocessor, only one thread at a time is actually running.

• If the running thread is executing a critical section, mutual exclusion may be

violated if

1. the running thread is preempted (or voluntarily yields) while it is in the

critical section, and

2. the scheduler chooses a different thread to run, and this new thread enters

the same critical section that the preempted thread was in

• Since preemption is caused by timer interrupts, mutual exclusion can be

enforced by disabling timer interrupts before a thread enters the critical section,

and re-enabling them when the thread leaves the critical section.

CS350 Operating Systems Spring 2014

Synchronization 15

Interrupts in OS/161

This is one way that the OS/161 kernel enforces mutual exclusion on a single

processor. There is a simple interface

• spl0() sets IPL to 0, enabling all interrupts.

• splhigh() sets IPL to the highest value, disabling all interrupts.

• splx(s) sets IPL to S, enabling whatever state S represents.

These are used by splx() and by the spinlock code.

• splraise(int oldipl, int newipl)

• spllower(int oldipl, int newipl)

• For splraise, NEWIPL > OLDIPL, and for spllower, NEWIPL < OLDIPL.

See kern/include/spl.h and kern/thread/spl.c

CS350 Operating Systems Spring 2014

Synchronization 16

Pros and Cons of Disabling Interrupts

• advantages:

– does not require any hardware-specific synchronization instructions

– works for any number of concurrent threads

• disadvantages:

– indiscriminate: prevents all preemption, not just preemption that would

threaten the critical section

– ignoring timer interrupts has side effects, e.g., kernel unaware of passage of

time. (Worse, OS/161’s splhigh() disables all interrupts, not just timer

interrupts.) Keep critical sections short to minimize these problems.

– will not enforce mutual exclusion on multiprocessors (why??)

CS350 Operating Systems Spring 2014

Synchronization 17

Hardware-Specific Synchronization Instructions

• a test-and-set instruction atomically sets the value of a specified memory

location and either places that memory location’s old value into a register

• abstractly, a test-and-set instruction works like the following function:

TestAndSet(addr,value)

old = *addr; // get old value at addr

*addr = value; // write new value to addr

return old;

these steps happen atomically

• example: x86 xchg instruction:

xchg src,dest

where src is typically a register, and dest is a memory address. Value in

register src is written to memory at address dest, and the old value at dest

is placed into src.

CS350 Operating Systems Spring 2014

Synchronization 18

Alternatives to Test-And-Set

• Compare-And-Swap

CompareAndSwap(addr,expected,value)

old = *addr; // get old value at addr

if (old == expected) *addr = value;

return old;

• example: SPARC cas instruction

cas addr,R1,R2

if value at addr matches value in R1 then swap contents of addr and R2

• load-linked and store-conditional

– Load-linked returns the current value of a memory location, while a

subsequent store-conditional to the same memory location will store a new

value only if no updates have occurred to that location since the load-linked.

– more on this later . . .

CS350 Operating Systems Spring 2014

Synchronization 19

A Spin Lock Using Test-And-Set

• a test-and-set instruction can be used to enforce mutual exclusion

• for each critical section, define a lock variable, in memory

boolean volatile lock; /* shared, initially false */

We will use the lock variable to keep track of whether there is a thread in the

critical section, in which case the value of lock will be true

• before a thread can enter the critical section, it does the following:

while (TestAndSet(&lock,true)) { } /* busy-wait */

• when the thread leaves the critical section, it does

lock = false;

• this enforces mutual exclusion (why?), but starvation is a possibility

This construct is sometimes known as a spin lock, since a thread “spins” in

the while loop until the critical section is free.

CS350 Operating Systems Spring 2014

Synchronization 20

Spinlocks in OS/161

struct spinlock {

volatile spinlock_data_t lk_lock; /* word for spin */

struct cpu *lk_holder; /* CPU holding this lock */

};

void spinlock_init(struct spinlock *lk);

void spinlock_cleanup(struct spinlock *lk);

void spinlock_acquire(struct spinlock *lk);

void spinlock_release(struct spinlock *lk);

bool spinlock_do_i_hold(struct spinlock *lk);

Spinning happens in spinlock acquire

CS350 Operating Systems Spring 2014

Synchronization 21

Spinlocks in OS/161

spinlock_init(struct spinlock *lk)

{

spinlock_data_set(&lk->lk_lock, 0);

lk->lk_holder = NULL;

}

void spinlock_cleanup(struct spinlock *lk)

{

KASSERT(lk->lk_holder == NULL);

KASSERT(spinlock_data_get(&lk->lk_lock) == 0);

}

void spinlock_data_set(volatile spinlock_data_t *sd,

unsigned val)

{

*sd = val;

}

CS350 Operating Systems Spring 2014

Synchronization 22

Acquiring a Spinlock in OS/161

void spinlock_acquire(struct spinlock *lk)

{

/* note: code that sets lk->holder has been removed! */

splraise(IPL_NONE, IPL_HIGH);

while (1) {

/* Do test-and-test-and-set to reduce bus contention */

if (spinlock_data_get(&lk->lk_lock) != 0) {

continue;

}

if (spinlock_data_testandset(&lk->lk_lock) != 0) {

continue;

}

break;

}

}

CS350 Operating Systems Spring 2014

Synchronization 23

Using Load-Linked / Store-Conditional

spinlock_data_testandset(volatile spinlock_data_t *sd)

{

spinlock_data_t x,y;

/* Test-and-set using LL/SC.

* Load the existing value into X, and use Y to store 1.

* After the SC, Y contains 1 if the store succeeded,

* 0 if it failed. On failure, return 1 to pretend

* that the spinlock was already held.

*/

y = 1;

CS350 Operating Systems Spring 2014

Synchronization 24

Using Load-Linked / Store-Conditional (Part 2)

__asm volatile(

".set push;" /* save assembler mode */

".set mips32;" /* allow MIPS32 instructions */

".set volatile;" /* avoid unwanted optimization */

"ll %0, 0(%2);" /* x = *sd */

"sc %1, 0(%2);" /* *sd = y; y = success? */

".set pop" /* restore assembler mode */

: "=r" (x), "+r" (y) : "r" (sd));

if (y == 0) {

return 1;

}

return x;

}

CS350 Operating Systems Spring 2014

Synchronization 25

Releasing a Spinlock in OS/161

void spinlock_release(struct spinlock *lk)

{

/* Note: code that sets lk->holder has been removed! */

spinlock_data_set(&lk->lk_lock, 0);

spllower(IPL_HIGH, IPL_NONE);

}

CS350 Operating Systems Spring 2014

Synchronization 26

Pros and Cons of Spinlocks

• Pros:

– can be efficient for short critical sections

– works on multiprocessors

• Cons:

– CPU is busy (nothing else runs) while waiting for lock

– starvation is possible

CS350 Operating Systems Spring 2014

Synchronization 27

Thread Blocking

• Sometimes a thread will need to wait for an event. For example, if a thread

needs to access a critical section that is busy, it must wait for the critical section

to become free before it can enter

• other examples that we will see later on:

– wait for data from a (relatively) slow device

– wait for input from a keyboard

– wait for busy device to become idle

• With spinlocks, threads busy wait when they cannot enter a critical section. This

means that a processor is busy doing useless work. If a thread may need to wait

for a long time, it would be better to avoid busy waiting.

• To handle this, the thread scheduler can block threads.

• A blocked thread stops running until it is signaled to wake up, allowing the

processor to run some other thread.

CS350 Operating Systems Spring 2014

Synchronization 28

Thread Blocking in OS/161

• OS/161 thread library functions for blocking and unblocking threads:

– void wchan lock(struct wchan *wc);

– void wchan unlock(struct wchan *wc);

∗ locks/unlocks the wait channel wc

– void wchan sleep(struct wchan *wc);

∗ blocks calling thread on wait channel wc

∗ channel must be locked, will be unlocked upon return

– void wchan wakeall(struct wchan *wc);

∗ unblock all threads sleeping on wait channel wc

– void wchan wakeone(struct wchan *wc);

∗ unblock one thread sleeping on wait channel wc

Note: current implementation is FIFO but not promised by the interface

CS350 Operating Systems Spring 2014

Synchronization 29

Thread Blocking in OS/161

• wchan sleep() is much like thread yield(). The calling thread is

voluntarily giving up the CPU, so the scheduler chooses a new thread to run, the

state of the running thread is saved and the new thread is dispatched. However:

– after a thread yield(), the calling thread is ready to run again as soon

as it is chosen by the scheduler

– after a wchan sleep(), the calling thread is blocked, and must not be

scheduled to run again until after it has been explicitly unblocked by a call

to wchan wakeone() or wchan wakeall().

CS350 Operating Systems Spring 2014

Synchronization 30

Thread States

• a very simple thread state transition diagram

ready

blocked

dispatch

need resource or eventgot resource or event

running

quantum expires
or thread_yield()

(wchan_sleep())(wchan_wakeone/all())

• the states:

running: currently executing

ready: ready to execute

blocked: waiting for something, so not ready to execute.

CS350 Operating Systems Spring 2014

Synchronization 31

Semaphores

• A semaphore is a synchronization primitive that can be used to enforce mutual

exclusion requirements. It can also be used to solve other kinds of

synchronization problems.

• A semaphore is an object that has an integer value, and that supports two

operations:

P: if the semaphore value is greater than 0, decrement the value. Otherwise,

wait until the value is greater than 0 and then decrement it.

V: increment the value of the semaphore

• Two kinds of semaphores:

counting semaphores: can take on any non-negative value

binary semaphores: take on only the values 0 and 1. (V on a binary

semaphore with value 1 has no effect.)

By definition, the P and V operations of a semaphore are atomic.

CS350 Operating Systems Spring 2014

Synchronization 32

A Simple Example using Semaphores

volatile int total = 0;

void add() { void sub() {

int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {

P(sem); P(sem);

total++; total--;

V(sem); V(sem);

} }

} }

What type of semaphore can be used for sem?

CS350 Operating Systems Spring 2014

Synchronization 33

OS/161 Semaphores

struct semaphore {

char *sem name;

struct wchan *sem wchan;

struct spinlock sem lock;

volatile int sem count;

};

struct semaphore *sem create(const char *name,

int initial count);

void P(struct semaphore *s);

void V(struct semaphore *s);

void sem destroy(struct semaphore *s);

see kern/include/synch.h and kern/thread/synch.c

CS350 Operating Systems Spring 2014

Synchronization 34

Mutual Exclusion Using a Semaphore

struct semaphore *s;

s = sem create("MySem1", 1); /* initial value is 1 */

P(s); /* do this before entering critical section */

critical section /* e.g., call to list remove front */

V(s); /* do this after leaving critical section */

CS350 Operating Systems Spring 2014

Synchronization 35

OS/161 Semaphores: P() from kern/thread/synch.c

P(struct semaphore *sem)

{

KASSERT(sem != NULL);

KASSERT(curthread->t in interrupt == false);

spinlock acquire(&sem->sem lock);

while (sem->sem count == 0) {

/* Note: we don’t maintain strict FIFO ordering */

wchan lock(sem->sem wchan);

spinlock release(&sem->sem lock);

wchan sleep(sem->sem wchan);

spinlock acquire(&sem->sem lock);

}

KASSERT(sem->sem count > 0);

sem->sem count--;

spinlock release(&sem->sem lock);

}

CS350 Operating Systems Spring 2014

Synchronization 36

OS/161 Semaphores: V() from kern/thread/synch.c

V(struct semaphore *sem)

{

KASSERT(sem != NULL);

spinlock acquire(&sem->sem lock);

sem->sem count++;

KASSERT(sem->sem count > 0);

wchan wakeone(sem->sem wchan);

spinlock release(&sem->sem lock);

}

CS350 Operating Systems Spring 2014

Synchronization 37

Producer/Consumer Synchronization

• suppose we have threads that add items to a list (producers) and threads that

remove items from the list (consumers)

• suppose we want to ensure that consumers do not consume if the list is empty -

instead they must wait until the list has something in it

• this requires synchronization between consumers and producers

• semaphores can provide the necessary synchronization, as shown on the next

slide

CS350 Operating Systems Spring 2014

Synchronization 38

Producer/Consumer Synchronization using Semaphores

struct semaphore *s;

s = sem create("Items", 0); /* initial value is 0 */

Producer’s Pseudo-code:

add item to the list (call list append())

V(s);

Consumer’s Pseudo-code:

P(s);

remove item from the list (call list remove front())

The Items semaphore does not enforce mutual exclusion on the list. If we

want mutual exclusion, we can also use semaphores to enforce it. (How?)

CS350 Operating Systems Spring 2014

Synchronization 39

Bounded Buffer Producer/Consumer Synchronization

• suppose we add one more requirement: the number of items in the list should

not exceed N

• producers that try to add items when the list is full should be made to wait until

the list is no longer full

• We can use an additional semaphore to enforce this new constraint:

– semaphore Full is used to count the number of full (occupied) entries in

the list (to ensure nothing is produced if the list is full)

– semaphore Empty is used to count the number of empty (unoccupied)

entries in the list (to ensure nothing is consumed if the list is empty)

struct semaphore *full;

struct semaphore *empty;

full = sem create("Full", 0); /* initial value = 0 */

empty = sem create("Empty", N); /* initial value = N */

CS350 Operating Systems Spring 2014

Synchronization 40

Bounded Buffer Producer/Consumer Synchronization with Semaphores

Producer’s Pseudo-code:

P(empty);

add item to the list (call list append())

V(full);

Consumer’s Pseudo-code:

P(full);

remove item from the list (call list remove front())

V(empty);

CS350 Operating Systems Spring 2014

Synchronization 41

OS/161 Locks

• OS/161 also uses a synchronization primitive called a lock. Locks are intended

to be used to enforce mutual exclusion.

struct lock *mylock = lock create("LockName");

lock aquire(mylock);

critical section /* e.g., call to list remove front */

lock release(mylock);

• A lock is similar to a binary semaphore with an initial value of 1. However,

locks also enforce an additional constraint: the thread that releases a lock must

be the same thread that most recently acquired it.

• The system enforces this additional constraint to help ensure that locks are used

as intended.

CS350 Operating Systems Spring 2014

Synchronization 42

Condition Variables

• OS/161 supports another common synchronization primitive: condition

variables

• each condition variable is intended to work together with a lock: condition

variables are only used from within the critical section that is protected by the

lock

• three operations are possible on a condition variable:

wait: This causes the calling thread to block, and it releases the lock associated

with the condition variable. Once the thread is unblocked it reacquires the

lock.

signal: If threads are blocked on the signaled condition variable, then one of

those threads is unblocked.

broadcast: Like signal, but unblocks all threads that are blocked on the

condition variable.

CS350 Operating Systems Spring 2014

Synchronization 43

Using Condition Variables

• Condition variables get their name because they allow threads to wait for

arbitrary conditions to become true inside of a critical section.

• Normally, each condition variable corresponds to a particular condition that is

of interest to an application. For example, in the bounded buffer

producer/consumer example on the following slides, the two conditions are:

– count > 0 (condition variable notempty)

– count < N (condition variable notfull)

• when a condition is not true, a thread can wait on the corresponding condition

variable until it becomes true

• when a thread detects that a condition is true, it uses signal or broadcast

to notify any threads that may be waiting

Note that signalling (or broadcasting to) a condition variable that has no

waiters has no effect. Signals do not accumulate.

CS350 Operating Systems Spring 2014

Synchronization 44

Waiting on Condition Variables

• when a blocked thread is unblocked (by signal or broadcast), it

reacquires the lock before returning from the wait call

• a thread is in the critical section when it calls wait, and it will be in the critical

section when wait returns. However, in between the call and the return, while

the caller is blocked, the caller is out of the critical section, and other threads

may enter.

• In particular, the thread that calls signal (or broadcast) to wake up the

waiting thread will itself be in the critical section when it signals. The waiting

thread will have to wait (at least) until the signaller releases the lock before it

can unblock and return from the wait call.

This describes Mesa-style condition variables, which are used in OS/161.

There are alternative condition variable semantics (Hoare semantics), which

differ from the semantics described here.

CS350 Operating Systems Spring 2014

Synchronization 45

Bounded Buffer Producer Using Locks and Condition Variables

int volatile count = 0; /* must initially be 0 */

struct lock *mutex; /* for mutual exclusion */

struct cv *notfull, *notempty; /* condition variables */

/* Initialization Note: the lock and cv’s must be created

* using lock create() and cv create() before Produce()

* and Consume() are called */

Produce(itemType item) {
lock acquire(mutex);

while (count == N) {
cv wait(notfull, mutex);

}
add item to buffer (call list append())

count = count + 1;

cv signal(notempty, mutex);

lock release(mutex);

}

CS350 Operating Systems Spring 2014

Synchronization 46

Bounded Buffer Consumer Using Locks and Condition Variables

itemType Consume() {

lock acquire(mutex);

while (count == 0) {

cv wait(notempty, mutex);

}

remove item from buffer (call list remove front())

count = count - 1;

cv signal(notfull, mutex);

lock release(mutex);

return(item);

}

Both Produce() and Consume() call cv wait() inside of a while

loop. Why?

CS350 Operating Systems Spring 2014

Synchronization 47

Deadlocks

• Suppose there are two threads and two locks, lockA and lockB, both initially

unlocked.

• Suppose the following sequence of events occurs

1. Thread 1 does lock acquire(lockA).

2. Thread 2 does lock acquire(lockB).

3. Thread 1 does lock acquire(lockB) and blocks, because lockB is

held by thread 2.

4. Thread 2 does lock acquire(lockA) and blocks, because lockA is

held by thread 1.

These two threads are deadlocked - neither thread can make progress. Wait-

ing will not resolve the deadlock. The threads are permanently stuck.

CS350 Operating Systems Spring 2014

Synchronization 48

Deadlocks (Another Simple Example)

• Suppose a machine has 64 MB of memory. The following sequence of events

occurs.

1. Thread A starts, requests 30 MB of memory.

2. Thread B starts, also requests 30 MB of memory.

3. Thread A requests an additional 8 MB of memory. The kernel blocks thread

A since there is only 4 MB of available memory.

4. Thread B requests an additional 5 MB of memory. The kernel blocks thread

B since there is not enough memory available.

These two threads are deadlocked.

CS350 Operating Systems Spring 2014

Synchronization 49

Deadlock Prevention

No Hold and Wait: prevent a thread from requesting resources if it currently has

resources allocated to it. A thread may hold several resources, but to do so it

must make a single request for all of them.

Preemption: take resources away from a thread and give them to another (usually

not possible). Thread is restarted when it can acquire all the resources it needs.

Resource Ordering: Order (e.g., number) the resource types, and require that each

thread acquire resources in increasing resource type order. That is, a thread may

make no requests for resources of type less than or equal to i if it is holding

resources of type i.

CS350 Operating Systems Spring 2014

Synchronization 50

Deadlock Detection and Recovery

• main idea: the system maintains the resource allocation graph and tests it to

determine whether there is a deadlock. If there is, the system must recover from

the deadlock situation.

• deadlock recovery is usually accomplished by terminating one or more of the

threads involved in the deadlock

• when to test for deadlocks? Can test on every blocked resource request, or can

simply test periodically. Deadlocks persist, so periodic detection will not

“miss” them.

Deadlock detection and deadlock recovery are both costly. This approach

makes sense only if deadlocks are expected to be infrequent.

CS350 Operating Systems Spring 2014

Processes and the Kernel 1

What is a Process?

Answer 1: a process is an abstraction of a program in execution

Answer 2: a process consists of

• an address space, which represents the memory that holds the program’s

code and data

• a thread of execution (possibly several threads)

• other resources associated with the running program. For example:

– open files

– sockets

– attributes, such as a name (process identifier)

– . . .

A process with one thread is a sequential process. A process with more than

one thread is a concurrent process.

CS350 Operating Systems Spring 2014

Processes and the Kernel 2

Multiprogramming

• multiprogramming means having multiple processes existing at the same time

• most modern, general purpose operating systems support multiprogramming

• all processes share the available hardware resources, with the sharing

coordinated by the operating system:

– Each process uses some of the available memory to hold its address space.

The OS decides which memory and how much memory each process gets

– OS can coordinate shared access to devices (keyboards, disks), since

processes use these devices indirectly, by making system calls.

– Processes timeshare the processor(s). Again, timesharing is controlled by

the operating system.

• OS ensures that processes are isolated from one another. Interprocess

communication should be possible, but only at the explicit request of the

processes involved.

CS350 Operating Systems Spring 2014

Processes and the Kernel 3

The OS Kernel

• The kernel is a program. It has code and data like any other program.

• Usually kernel code runs in a privileged execution mode, while other programs

do not

CPU registers

memory codedata code datastack

thread library

kernelapplication

CS350 Operating Systems Spring 2014

Processes and the Kernel 4

Kernel Privilege, Kernel Protection

• What does it mean to run in privileged mode?

• Kernel uses privilege to

– control hardware

– protect and isolate itself from processes

• privileges vary from platform to platform, but may include:

– ability to execute special instructions (like halt)

– ability to manipulate processor state (like execution mode)

– ability to access memory addresses that can’t be accessed otherwise

• kernel ensures that it is isolated from processes. No process can execute or

change kernel code, or read or write kernel data, except through controlled

mechanisms like system calls.

CS350 Operating Systems Spring 2014

Processes and the Kernel 5

System Calls

• System calls are an interface between processes and the kernel.

• A process uses system calls to request operating system services.

• Some examples:

Service OS/161 Examples

create,destroy,manage processes fork,execv,waitpid,getpid

create,destroy,read,write files open,close,remove,read,write

manage file system and directories mkdir,rmdir,link,sync

interprocess communication pipe,read,write

manage virtual memory sbrk

query,manage system reboot, time

CS350 Operating Systems Spring 2014

Processes and the Kernel 6

How System Calls Work

• The hardware provides a mechanism that a running program can use to cause a

system call. Often, it is a special instruction, e.g., the MIPS syscall

instruction.

• What happens on a system call:

– the processor is switched to system (privileged) execution mode

– key parts of the current thread context, such as the program counter, are

saved

– the program counter is set to a fixed (specified by the hardware) memory

address, which is within the kernel’s address space

CS350 Operating Systems Spring 2014

Processes and the Kernel 7

System Call Execution and Return

• Once a system call occurs, the calling thread will be executing a system call

handler, which is part of the kernel, in privileged mode.

• The kernel’s handler determines which service the calling process wanted, and

performs that service.

• When the kernel is finished, it returns from the system call. This means:

– restore the key parts of the thread context that were saved when the system

call was made

– switch the processor back to unprivileged (user) execution mode

• Now the thread is executing the calling process’ program again, picking up

where it left off when it made the system call.

A system call causes a thread to stop executing application code and to start

executing kernel code in privileged mode. The system call return switches

the thread back to executing application code in unprivileged mode.

CS350 Operating Systems Spring 2014

Processes and the Kernel 8

System Call Diagram

Process Kernel

time

system call return

system call

thread
execution
path

CS350 Operating Systems Spring 2014

Processes and the Kernel 9

System Call Software Stack

follows kernel
system call
convention

procedure call
convention

follows

Application

Syscall Library

Kernel

unprivileged
code

privileged
code

system call
happens here

CS350 Operating Systems Spring 2014

Processes and the Kernel 10

OS/161 close System Call Description

Library: standard C library (libc)

Synopsis:

#include <unistd.h>

int

close(int fd);

Description: The file handle fd is closed. . . .

Return Values: On success, close returns 0. On error, -1 is returned and errno

is set according to the error encountered.

Errors:

EBADF: fd is not a valid file handle

EIO: A hard I/O error occurred

CS350 Operating Systems Spring 2014

Processes and the Kernel 11

An Example System Call: A Tiny OS/161 Application that Uses close

/* Program: user/uw-testbin/syscall.c */

#include <unistd.h>

#include <errno.h>

int

main()

{

int x;

x = close(999);

if (x < 0) {

return errno;

}

return x;

}

CS350 Operating Systems Spring 2014

Processes and the Kernel 12

Disassembly listing of user/uw-testbin/syscall

00400050 <main>:

400050: 27bdffe8 addiu sp,sp,-24

400054: afbf0010 sw ra,16(sp)

400058: 0c100077 jal 4001dc <close>

40005c: 240403e7 li a0,999

400060: 04410003 bgez v0,400070 <main+0x20>

400064: 00000000 nop

400068: 3c021000 lui v0,0x1000

40006c: 8c420000 lw v0,0(v0)

400070: 8fbf0010 lw ra,16(sp)

400074: 00000000 nop

400078: 03e00008 jr ra

40007c: 27bd0018 addiu sp,sp,24

MIPS procedure call convention: arguments in a0,a1,. . ., return value in v0.

The above can be obtained using cs350-objdump -d.

CS350 Operating Systems Spring 2014

Processes and the Kernel 13

OS/161 MIPS System Call Conventions

• When the syscall instruction occurs:

– An integer system call code should be located in register R2 (v0)

– Any system call arguments should be located in registers R4 (a0), R5 (a1),

R6 (a2), and R7 (a3), much like procedure call arguments.

• When the system call returns

– register R7 (a3) will contain a 0 if the system call succeeded, or a 1 if the

system call failed

– register R2 (v0) will contain the system call return value if the system call

succeeded, or an error number (errno) if the system call failed.

CS350 Operating Systems Spring 2014

Processes and the Kernel 14

OS/161 System Call Code Definitions

/* Contains a number for every more-or-less standard */

/* Unix system call (you will implement some subset). */

...

#define SYS_close 49

#define SYS_read 50

#define SYS_pread 51

//#define SYS_readv 52 /* won’t be implementing */

//#define SYS_preadv 53 /* won’t be implementing */

#define SYS_getdirentry 54

#define SYS_write 55

...

This comes from kern/include/kern/syscall.h. The files in

kern/include/kern define things (like system call codes) that must be

known by both the kernel and applications.

CS350 Operating Systems Spring 2014

Processes and the Kernel 15

System Call Wrapper Functions from the Standard Library

...

004001dc <close>:

4001dc: 08100030 j 4000c0 <__syscall>

4001e0: 24020031 li v0,49

004001e4 <read>:

4001e4: 08100030 j 4000c0 <__syscall>

4001e8: 24020032 li v0,50

...

The above is disassembled code from the standard C library (libc), which is

linked with user/uw-testbin/syscall.o.

CS350 Operating Systems Spring 2014

Processes and the Kernel 16

The OS/161 System Call and Return Processing

004000c0 <__syscall>:

4000c0: 0000000c syscall

4000c4: 10e00005 beqz a3,4000dc <__syscall+0x1c>

4000c8: 00000000 nop

4000cc: 3c011000 lui at,0x1000

4000d0: ac220000 sw v0,0(at)

4000d4: 2403ffff li v1,-1

4000d8: 2402ffff li v0,-1

4000dc: 03e00008 jr ra

4000e0: 00000000 nop

The system call and return processing, from the standard C library. Like the

rest of the library, this is unprivileged, user-level code.

CS350 Operating Systems Spring 2014

Processes and the Kernel 17

OS/161 MIPS Exception Handler

common_exception:

mfc0 k0, c0_status /* Get status register */

andi k0, k0, CST_KUp /* Check the we-were-in-user-mode bit */

beq k0, $0, 1f /* If clear, from kernel, already have stack */

/* 1f is branch forward to label 1: */

nop /* delay slot */

/* Coming from user mode - find kernel stack */

mfc0 k1, c0_context /* we keep the CPU number here */

srl k1, k1, CTX_PTBASESHIFT /* shift to get the CPU number */

sll k1, k1, 2 /* shift back to make array index */

lui k0, %hi(cpustacks) /* get base address of cpustacks[] */

addu k0, k0, k1 /* index it */

move k1, sp /* Save previous stack pointer */

b 2f /* Skip to common code */

lw sp, %lo(cpustacks)(k0) /* Load kernel sp (in delay slot) */

CS350 Operating Systems Spring 2014

Processes and the Kernel 18

OS/161 MIPS Exception Handler

1:

/* Coming from kernel mode - just save previous stuff */

move k1, sp /* Save previous stack in k1 (delay slot) */

2:

/* At this point:

* Interrupts are off. (The processor did this for us.)

* k0 contains the value for curthread, to go into s7.

* k1 contains the old stack pointer.

* sp points into the kernel stack.

* All other registers are untouched.

*/

When the syscall instruction occurs, the MIPS transfers control to ad-

dress 0x80000080. This kernel exception handler lives there. See

kern/arch/mips/locore/exception-mips1.S

CS350 Operating Systems Spring 2014

Processes and the Kernel 19

OS/161 User and Kernel Thread Stacks

CPU registers

memory codedata code datastack stack

thread library

application kernel

Each OS/161 thread has two stacks, one that is used while the thread is ex-

ecuting unprivileged application code, and another that is used while the

thread is executing privileged kernel code.

CS350 Operating Systems Spring 2014

Processes and the Kernel 20

OS/161 MIPS Exception Handler (cont’d)

The common exception code then does the following:

1. allocates a trap frame on the thread’s kernel stack and saves the user-level

application’s complete processor state (all registers except k0 and k1) into the

trap frame.

2. calls the mips trap function to continue processing the exception.

3. when mips trap returns, restores the application processor state from the trap

frame to the registers

4. issues MIPS jr and rfe (restore from exception) instructions to return control

to the application code. The jr instruction takes control back to the location

specified by the application program counter when the syscall occurred (i.e.,

exception PC) and the rfe (which happens in the delay slot of the jr) restores

the processor to unprivileged mode

CS350 Operating Systems Spring 2014

Processes and the Kernel 21

OS/161 Trap Frame

CPU registers

memory codedata code datastack stack

thread library

trap frame with saved
application state

application kernel

While the kernel handles the system call, the application’s CPU state is saved

in a trap frame on the thread’s kernel stack, and the CPU registers are avail-

able to hold kernel execution state.

CS350 Operating Systems Spring 2014

Processes and the Kernel 22

mips trap: Handling System Calls, Exceptions, and Interrupts

• On the MIPS, the same exception handler is invoked to handle system calls,

exceptions and interrupts

• The hardware sets a code to indicate the reason (system call, exception, or

interrupt) that the exception handler has been invoked

• OS/161 has a handler function corresponding to each of these reasons. The

mips trap function tests the reason code and calls the appropriate function:

the system call handler (syscall) in the case of a system call.

• mips trap can be found in kern/arch/mips/locore/trap.c.

Interrupts and exceptions will be presented shortly

CS350 Operating Systems Spring 2014

Processes and the Kernel 23

OS/161 System Call Handler

syscall(struct trapframe *tf)

{ callno = tf->tf_v0; retval = 0;

switch (callno) {

case SYS_reboot:

err = sys_reboot(tf->tf_a0);

break;

case SYS___time:

err = sys___time((userptr_t)tf->tf_a0,

(userptr_t)tf->tf_a1);

break;

/* Add stuff here */

default:

kprintf("Unknown syscall %d\n", callno);

err = ENOSYS;

break;

}

syscall checks system call code and invokes a handler for the indicated

system call. See kern/arch/mips/syscall/syscall.c

CS350 Operating Systems Spring 2014

Processes and the Kernel 24

OS/161 MIPS System Call Return Handling

if (err) {

tf->tf_v0 = err;

tf->tf_a3 = 1; /* signal an error */

} else {

/* Success. */

tf->tf_v0 = retval;

tf->tf_a3 = 0; /* signal no error */

}

/* Advance the PC, to avoid the syscall again. */

tf->tf_epc += 4;

/* Make sure the syscall code didn’t forget to lower spl */

KASSERT(curthread->t_curspl == 0);

/* ...or leak any spinlocks */

KASSERT(curthread->t_iplhigh_count == 0);

}

syscall must ensure that the kernel adheres to the system call return con-

vention.

CS350 Operating Systems Spring 2014

Processes and the Kernel 25

Exceptions

• Exceptions are another way that control is transferred from a process to the

kernel.

• Exceptions are conditions that occur during the execution of an instruction by a

process. For example, arithmetic overflows, illegal instructions, or page faults

(to be discussed later).

• Exceptions are detected by the hardware.

• When an exception is detected, the hardware transfers control to a specific

address.

• Normally, a kernel exception handler is located at that address.

Exception handling is similar to, but not identical to, system call handling.

(What is different?)

CS350 Operating Systems Spring 2014

Processes and the Kernel 26

MIPS Exceptions

EX_IRQ 0 /* Interrupt */

EX_MOD 1 /* TLB Modify (write to read-only page) */

EX_TLBL 2 /* TLB miss on load */

EX_TLBS 3 /* TLB miss on store */

EX_ADEL 4 /* Address error on load */

EX_ADES 5 /* Address error on store */

EX_IBE 6 /* Bus error on instruction fetch */

EX_DBE 7 /* Bus error on data load *or* store */

EX_SYS 8 /* Syscall */

EX_BP 9 /* Breakpoint */

EX_RI 10 /* Reserved (illegal) instruction */

EX_CPU 11 /* Coprocessor unusable */

EX_OVF 12 /* Arithmetic overflow */

In OS/161, mips trap uses these codes to decide whether it has been in-

voked because of an interrupt, a system call, or an exception.

CS350 Operating Systems Spring 2014

Processes and the Kernel 27

Interrupts (Revisited)

• Interrupts are a third mechanism by which control may be transferred to the

kernel

• Interrupts are similar to exceptions. However, they are caused by hardware

devices, not by the execution of a program. For example:

– a network interface may generate an interrupt when a network packet arrives

– a disk controller may generate an interrupt to indicate that it has finished

writing data to the disk

– a timer may generate an interrupt to indicate that time has passed

• Interrupt handling is similar to exception handling - current execution context is

saved, and control is transferred to a kernel interrupt handler at a fixed address.

CS350 Operating Systems Spring 2014

Processes and the Kernel 28

Interrupts, Exceptions, and System Calls: Summary

• Interrupts, exceptions and system calls are three mechanisms by which control

is transferred from an application program to the kernel

• When these events occur, the hardware switches the CPU into privileged mode

and transfers control to a predefined location, at which a kernel handler should

be located.

• The kernel handler creates a trap frame and uses it to saves the application

thread context so that the handler code can be executed on the CPU.

• Just before the kernel handler finishes executing, it restores the application

thread context from the trap frame, before returning control to the application.

In OS/161, trap frames are placed on the kernel stack of the thread performed

the system call, or of the thread that was running when the interrupt or ex-

ception occurred

CS350 Operating Systems Spring 2014

Processes and the Kernel 29

System Calls for Process Management

Linux OS/161

Creation fork,execv fork,execv

Destruction exit,kill exit

Synchronization wait,waitpid,pause,. . . waitpid

Attribute Mgmt getpid,getuid,nice,getrusage,. . . getpid

CS350 Operating Systems Spring 2014

Processes and the Kernel 30

The fork, exit, getpid and waitpid system calls

main()

{

rc = fork(); /* returns 0 to child, pid to parent */

if (rc == 0) {

my_pid = getpid();

x = child_code();

_exit(x);

} else {

child_pid = rc;

parent_code();

child_exit = waitpid(child_pid);

parent_pid = getpid();

}

}

CS350 Operating Systems Spring 2014

Processes and the Kernel 31

Process Creation Example (Part 1)

KernelProcess A

Parent process (Process A) requests creation of a new process.

fork

CS350 Operating Systems Spring 2014

Processes and the Kernel 32

Process Creation Example (Part 2)

KernelProcess A Process B

B’s thread is
ready, not runningsystem call return

Kernel creates new process (Process B)

fork

CS350 Operating Systems Spring 2014

Processes and the Kernel 33

The execv system call

int main()

{

int rc = 0;

char *args[4];

args[0] = (char *) "/testbin/argtest";

args[1] = (char *) "first";

args[2] = (char *) "second";

args[2] = 0;

rc = execv("/testbin/argtest", args);

printf("If you see this execv failed\n");

printf("rc = %d errno = %d\n", rc, errno);

exit(0);

}

CS350 Operating Systems Spring 2014

Processes and the Kernel 34

Combining fork and execv

main()

{

char *args[4];

/* set args here */

rc = fork(); /* returns 0 to child, pid to parent */

if (rc == 0) {

status = execv("/testbin/argtest",args);

printf("If you see this execv failed\n");

printf("status = %d errno = %d\n", status, errno);

exit(0);

} else {

child_pid = rc;

parent_code();

child_exit = waitpid(child_pid);

}

}

CS350 Operating Systems Spring 2014

Processes and the Kernel 35

Implementation of Processes

• The kernel maintains information about all of the processes in the system in a

data structure often called the process table.

• Per-process information may include:

– process identifier and owner

– the address space for the process

– threads belonging to the process

– lists of resources allocated to the process, such as open files

– accounting information

CS350 Operating Systems Spring 2014

Processes and the Kernel 36

OS/161 Process

/* From kern/include/proc.h */

struct proc {

char *p_name; /* Name of this process */

struct spinlock p_lock; /* Lock for this structure */

struct threadarray p_threads; /* Threads in process */

struct addrspace *p_addrspace; /* virtual address space */

struct vnode *p_cwd; /* current working directory */

/* add more material here as needed */

};

CS350 Operating Systems Spring 2014

Processes and the Kernel 37

OS/161 Process

/* From kern/include/proc.h */

/* Create a fresh process for use by runprogram() */

struct proc *proc_create_runprogram(const char *name);

/* Destroy a process */

void proc_destroy(struct proc *proc);

/* Attach a thread to a process */

/* Must not already have a process */

int proc_addthread(struct proc *proc, struct thread *t);

/* Detach a thread from its process */

void proc_remthread(struct thread *t);

...

CS350 Operating Systems Spring 2014

Processes and the Kernel 38

Implementing Timesharing

• whenever a system call, exception, or interrupt occurs, control is transferred

from the running program to the kernel

• at these points, the kernel has the ability to cause a context switch from the

running process’ thread to another process’ thread

• notice that these context switches always occur while a process’ thread is

executing kernel code

By switching from one process’s thread to another process’s thread, the ker-

nel timeshares the processor among multiple processes.

CS350 Operating Systems Spring 2014

Processes and the Kernel 39

Two Processes in OS/161

CPU registers

data code codedatadata codestack stack stackstack

thread librarytrap frame for app #1

saved kernel thread
context for thread #1

application #1 kernel application #2

CS350 Operating Systems Spring 2014

Processes and the Kernel 40

Timesharing Example (Part 1)

KernelProcess A Process B

context switch

A’s thread is
ready, not running

system call
or exception
or interrupt

Kernel switches execution context to Process B.

return

B’s thread is
ready, not running

CS350 Operating Systems Spring 2014

Processes and the Kernel 41

Timesharing Example (Part 2)

KernelProcess A Process B

Kernel switches execution context back to process A.

B’s thread is
ready, not running

context switch
system call
or exception
or interrupt

return

CS350 Operating Systems Spring 2014

Processes and the Kernel 42

Implementing Preemption

• the kernel uses interrupts from the system timer to measure the passage of time

and to determine whether the running process’s quantum has expired.

• a timer interrupt (like any other interrupt) transfers control from the running

program to the kernel.

• this gives the kernel the opportunity to preempt the running thread and dispatch

a new one.

CS350 Operating Systems Spring 2014

Processes and the Kernel 43

Preemptive Multiprogramming Example

KernelProcess A Process B

context
switches

timer interrupt

interrupt return

ready thread

running thread

Key:

CS350 Operating Systems Spring 2014

Virtual Memory 1

Virtual and Physical Addresses

• Physical addresses are provided directly by the machine.

– one physical address space per machine

– the size of a physical address determines the maximum amount of

addressable physical memory

• Virtual addresses (or logical addresses) are addresses provided by the OS to

processes.

– one virtual address space per process

• Programs use virtual addresses. As a program runs, the hardware (with help

from the operating system) converts each virtual address to a physical address.

• The conversion of a virtual address to a physical address is called address

translation.

On the MIPS, virtual addresses and physical addresses are 32 bits long. This

limits the size of virtual and physical address spaces.

CS350 Operating Systems Spring 2014

Virtual Memory 2

Simple Address Translation: Dynamic Relocation

• hardware provides a memory management unit (MMU) which includes a

relocation register and a limit register (or bound register).

• to translate a virtual address to a physical address, the MMU:

– checks whether the virtual address is larger than the limit in the limit register

– if it is, the MMU raises an exception

– otherwise, the MMU adds the base address (stored in the relocation register)

to the virtual address to produce the physical address

• The OS maintains a separate base address and limit for each process, and

ensures that the relocation and limit registers in the MMU always contain the

base address and limit of the currently-running process.

• To ensure this, the OS must normally change the values in the MMU’s registers

during each context switch.

CS350 Operating Systems Spring 2014

Virtual Memory 3

Properties of Dynamic Relocation

• each virtual address space corresponds to a contiguous range of physical

addresses

• the OS is responsible for deciding where each virtual address space should map

to in physical memory

– the OS must track which parts of physical memory are in use, and which

parts are free

– since different address spaces may have different sizes, the OS must

allocate/deallocate variable-sized chunks of physical memory

– this creates the potential for external fragmentation of physical memory:

wasted, unallocated space

• the MMU is responsible for performing all address translations, using base and

limit information provided to it by the the OS

CS350 Operating Systems Spring 2014

Virtual Memory 4

Dynamic Relocation: Address Space Diagram

2
m

−1

0

Proc 1 virtual address space

0

0

max1

max2

virtual address space

Proc 2

physical memory

A

A + max1

C + max2

C

CS350 Operating Systems Spring 2014

Virtual Memory 5

Dynamic Relocation Mechanism

v bits m bits

m bits

+

virtual address physical address

relocation
register

This diagram shows only the address translation, not the limit check.

CS350 Operating Systems Spring 2014

Virtual Memory 6

Address Translation: Paging

• Each virtual address space is divided into fixed-size chunks called pages

• The physical address space is divided into frames. Frame size matches page

size.

• OS maintains a page table for each process. Page table specifies the frame in

which each of the process’s pages is located.

• At run time, MMU translates virtual addresses to physical using the page table

of the running process.

CS350 Operating Systems Spring 2014

Virtual Memory 7

Address Space Diagram for Paging

2
m

−1

0

Proc 1 virtual address space

0

max1

virtual address space

Proc 2

physical memory

max2

0

CS350 Operating Systems Spring 2014

Virtual Memory 8

Properties of Paging

• OS is responsible for deciding which frame will hold each page

– simple physical memory management

– potential for internal fragmentation of physical memory: wasted, allocated

space

– virtual address space need not be physically contiguous in physical space

after translation.

• MMU is responsible for performing all address translations using the page table

that is created and maintained by the OS.

• The OS must normally change the values in the MMU registers on each context

switch, so that they refer to the page table of the currently-running process.

CS350 Operating Systems Spring 2014

Virtual Memory 9

How the MMU Translates Virtual Addresses

• The MMU includes a page table base register and a page table length register.

– the base register contains the (physical) address of the first page table entry

for the currently-running process

– the length register contains the number of entries in the page table of the

currently running process.

• To translate a virtual address, the MMU:

– determines the page number and offset of the virtual address

– checks whether the page number is larger than the value in the page table

length register

– if it is, the MMU raises an exception

– otherwise, the MMU uses the page table to determine the frame number of

the frame that holds the virtual page, and combines the frame number and

offset to determine the physical address

CS350 Operating Systems Spring 2014

Virtual Memory 10

Paging Mechanism

m bits

register
page table base

v bits m bits

frame # offsetpage # offset

virtual address physical address

frame #

page tableprotection and

other flags

CS350 Operating Systems Spring 2014

Virtual Memory 11

Page Table Entries

• the primary payload of each page table entry (PTE) is a frame number

• PTEs typically contain other information as well, such as

– information provided by the kernel to control address translation by the

MMU, such as:

∗ valid bit: is the process permitted to use this part of the address space?

∗ present bit: is this page mapped into physical memory (useful with page

replacement, to be discussed later)

∗ protection bits: to be discussed

– information provided by the MMU to help the kernel manage address

spaces, such as:

∗ reference (use) bit: has the process used this page recently?

∗ dirty bit: has the process changed the contents of this page?

CS350 Operating Systems Spring 2014

Virtual Memory 12

Validity and Protection

• during address translation, the MMU checks that the page being used by the

process has a valid page table entry

– typically, each PTE contains a valid bit

– invalid PTEs indicate pages that the process is not permitted to use

• the MMU may also enforce other protection rules, for example

– each PTE may contain a read-only bit that indicates whether the

corresponding page is read-only, or can be modified by the process

• if a process attempts to access an invalid page, or violates a protection rule, the

MMU raises an exception, which is handled by the kernel

The kernel controls which pages are valid and which are protected by setting

the contents of PTEs and/or MMU registers.

CS350 Operating Systems Spring 2014

Virtual Memory 13

Summary: Roles of the Kernel and the MMU

• Kernel:

– manage MMU state on address space switches (context switch from thread

in one process to thread in a different process)

– create and manage page tables

– manage (allocate/deallocate) physical memory

– handle exceptions raised by the MMU

• MMU (hardware):

– translate virtual addresses to physical addresses

– check for and raise exceptions when necessary

CS350 Operating Systems Spring 2014

Virtual Memory 14

Speed of Address Translation

• Execution of each machine instruction may involve one, two or more memory

operations

– one to fetch instruction

– one or more for instruction operands

• Address translation through a page table adds one extra memory operation (for

page table entry lookup) for each memory operation performed during

instruction execution

– Simple address translation through a page table can cut instruction execution

rate in half.

– More complex translation schemes (e.g., multi-level paging) are even more

expensive.

• Solution: include a Translation Lookaside Buffer (TLB) in the MMU

– TLB is a fast, fully associative address translation cache

– TLB hit avoids page table lookup

CS350 Operating Systems Spring 2014

Virtual Memory 15

TLB

• Each entry in the TLB contains a (page number, frame number) pair.

• If address translation can be accomplished using a TLB entry, access to the

page table is avoided.

– This is called a TLB hit.

• Otherwise, translate through the page table.

– This is called a TLB miss.

• TLB lookup is much faster than a memory access. TLB is an associative

memory - page numbers of all entries are checked simultaneously for a match.

However, the TLB is typically small (typically hundreds, e.g. 128, or 256

entries).

• If the MMU cannot distinguish TLB entries from different address spaces, then

the kernel must clear or invalidate the TLB on each context switch. (Why?)

CS350 Operating Systems Spring 2014

Virtual Memory 16

TLB Management

• An TLB may be hardware-controlled or software-controlled

• In a hardware-controlled TLB, when there is a TLB miss:

– The MMU (hardware) finds the frame number by performing a page table

lookup, translates the virtual address, and adds the transalation (page

number, frame number pair) to the TLB.

– If the TLB is full, the MMU evicts an entry to make room for the new one.

• In a software-controlled TLB, when there is a TLB miss:

– the MMU simply causes an exception, which triggers the kernel exception

handler to run

– the kernel must determine the correct page-to-frame mapping and load the

mapping into the TLB (evicting an entry if the TLB is full), before returning

from the exception

– after the exception handler runs, the MMU retries the instruction that caused

the exception.

CS350 Operating Systems Spring 2014

Virtual Memory 17

The MIPS R3000 TLB

• The MIPS has a software-controlled TLB that can hold 64 entries.

• Each TLB entry includes a virtual page number, a physical frame number, an

address space identifier (not used by OS/161), and several flags (valid,

read-only).

• OS/161 provides low-level functions for managing the TLB:

TLB Write: modify a specified TLB entry

TLB Read: read a specified TLB entry

TLB Probe: look for a page number in the TLB

• If the MMU cannot translate a virtual address using the TLB it raises an

exception, which must be handled by OS/161.

See kern/arch/mips/include/tlb.h

CS350 Operating Systems Spring 2014

Virtual Memory 18

What is in a Virtual Address Space?

growth

text (program code) and read−only data

data

0x10000000 − 0x101200b0

0x00000000 0xffffffff

stack
high end of stack: 0x7fffffff

0x00400000 − 0x00401a0c

This diagram illustrates the layout of the virtual address space for the OS/161

test application user/testbin/sort

CS350 Operating Systems Spring 2014

Virtual Memory 19

Address Translation In OS/161: dumbvm

• OS/161 starts with a very simple virtual memory implementation

• virtual address spaces are described by addrspace objects, which record the
mappings from virtual to physical addresses

struct addrspace {

#if OPT_DUMBVM

vaddr_t as_vbase1; /* base virtual address of code segment */

paddr_t as_pbase1; /* base physical address of code segment */

size_t as_npages1; /* size (in pages) of code segment */

vaddr_t as_vbase2; /* base virtual address of data segment */

paddr_t as_pbase2; /* base physical address of data segment */

size_t as_npages2; /* size (in pages) of data segment */

paddr_t as_stackpbase; /* base physical address of stack */

#else

/* Put stuff here for your VM system */

#endif

};

• Notice that each segment must be mapped contiguously into physical memory.

CS350 Operating Systems Spring 2014

Virtual Memory 20

Address Translation Under dumbvm

• the MIPS MMU tries to translate each virtual address using the entries in the

TLB

• If there is no valid entry for the page the MMU is trying to translate, the MMU

generates a TLB fault (called an address exception)

• The vm fault function (see kern/arch/mips/vm/dumbvm.c) handles

this exception for the OS/161 kernel. It uses information from the current

process’ addrspace to construct and load a TLB entry for the page.

• On return from exception, the MIPS retries the instruction that caused the

exception. This time, it may succeed.

vm fault is not very sophisticated. If the TLB fills up, OS/161 will crash!

CS350 Operating Systems Spring 2014

Virtual Memory 21

Initializing an Address Space

• When the kernel creates a process to run a particular program, it must create an

address space for the process, and load the program’s code and data into that

address space

OS/161 pre-loads the address space before the program runs. Many other

OS load pages on demand. (Why?)

• A program’s code and data is described in an executable file, which is created

when the program is compiled and linked

• OS/161 (and some other operating systems) expect executable files to be in ELF

(Executable and Linking Format) format

• The OS/161 execv system call re-initializes the address space of a process

int execv(const char *program, char **args)

• The program parameter of the execv system call should be the name of the

ELF executable file for the program that is to be loaded into the address space.

CS350 Operating Systems Spring 2014

Virtual Memory 22

ELF Files

• ELF files contain address space segment descriptions, which are useful to the

kernel when it is loading a new address space

• the ELF file identifies the (virtual) address of the program’s first instruction

• the ELF file also contains lots of other information (e.g., section descriptors,

symbol tables) that is useful to compilers, linkers, debuggers, loaders and other

tools used to build programs

CS350 Operating Systems Spring 2014

Virtual Memory 23

Address Space Segments in ELF Files

• The ELF file contains a header describing the segments and segment images.

• Each ELF segment describes a contiguous region of the virtual address space.

• The header includes an entry for each segment which describes:

– the virtual address of the start of the segment

– the length of the segment in the virtual address space

– the location of the start of the segment image in the ELF file (if present)

– the length of the segment image in the ELF file (if present)

• the image is an exact copy of the binary data that should be loaded into the

specified portion of the virtual address space

• the image may be smaller than the address space segment, in which case the rest

of the address space segment is expected to be zero-filled

To initialize an address space, the OS/161 kernel copies segment images

from the ELF file to the specifed portions of the virtual address space.

CS350 Operating Systems Spring 2014

Virtual Memory 24

ELF Files and OS/161

• OS/161’s dumbvm implementation assumes that an ELF file contains two

segments:

– a text segment, containing the program code and any read-only data

– a data segment, containing any other global program data

• the ELF file does not describe the stack (why not?)

• dumbvm creates a stack segment for each process. It is 12 pages long, ending at

virtual address 0x7fffffff

Look at kern/syscall/loadelf.c to see how OS/161 loads segments

from ELF files

CS350 Operating Systems Spring 2014

Virtual Memory 25

ELF Sections and Segments

• In the ELF file, a program’s code and data are grouped together into sections,

based on their properties. Some sections:

.text: program code

.rodata: read-only global data

.data: initialized global data

.bss: uninitialized global data (Block Started by Symbol)

.sbss: small uninitialized global data

• not all of these sections are present in every ELF file

• normally

– the .text and .rodata sections together form the text segment

– the .data, .bss and .sbss sections together form the data segement

• space for local program variables is allocated on the stack when the program

runs

CS350 Operating Systems Spring 2014

Virtual Memory 26

The user/uw-testbin/segments.c Example Program (1 of 2)

#include <unistd.h>

#define N (200)

int x = 0xdeadbeef;

int t1;

int t2;

int t3;

int array[4096];

char const *str = "Hello World\n";

const int z = 0xabcddcba;

struct example {

int ypos;

int xpos;

};

CS350 Operating Systems Spring 2014

Virtual Memory 27

The user/uw-testbin/segments.c Example Program (2 of 2)

int

main()

{

int count = 0;

const int value = 1;

t1 = N;

t2 = 2;

count = x + t1;

t2 = z + t2 + value;

reboot(RB_POWEROFF);

return 0; /* avoid compiler warnings */

}

CS350 Operating Systems Spring 2014

Virtual Memory 28

ELF Sections for the Example Program

Section Headers:

[Nr] Name Type Addr Off Size Flg

[0] NULL 00000000 000000 000000

[1] .text PROGBITS 00400000 010000 000200 AX

[2] .rodata PROGBITS 00400200 010200 000020 A

[3] .reginfo MIPS_REGINFO 00400220 010220 000018 A

[4] .data PROGBITS 10000000 020000 000010 WA

[5] .sbss NOBITS 10000010 020010 000014 WAp

[6] .bss NOBITS 10000030 020010 004000 WA

...

Flags: W (write), A (alloc), X (execute), p (processor specific)

Size = number of bytes (e.g., .text is 0x200 = 512 bytes

Off = offset into the ELF file

Addr = virtual address

The cs350-readelf program can be used to inspect OS/161 MIPS ELF

files: cs350-readelf -a segments

CS350 Operating Systems Spring 2014

Virtual Memory 29

ELF Segments for the Example Program

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

REGINFO 0x010220 0x00400220 0x00400220 0x00018 0x00018 R 0x4

LOAD 0x010000 0x00400000 0x00400000 0x00238 0x00238 R E 0x10000

LOAD 0x020000 0x10000000 0x10000000 0x00010 0x04030 RW 0x10000

• segment info, like section info, can be inspected using the cs350-readelf

program

• the REGINFO section is not used

• the first LOAD segment includes the .text and .rodata sections

• the second LOAD segment includes .data, .sbss, and .bss

CS350 Operating Systems Spring 2014

Virtual Memory 30

Contents of the Example Program’s .text Section

Contents of section .text:

400000 3c1c1001 279c8000 2408fff8 03a8e824 <...’...$......$

...

Decoding 3c1c1001 to determine instruction

0x3c1c1001 = binary 111100000111000001000000000001

0011 1100 0001 1100 0001 0000 0000 0001

instr | rs | rt | immediate

6 bits | 5 bits| 5 bits| 16 bits

001111 | 00000 | 11100 | 0001 0000 0000 0001

LUI | 0 | reg 28| 0x1001

LUI | unused| reg 28| 0x1001

Load upper immediate into rt (register target)

lui gp, 0x1001

The cs350-objdump program can be used to inspect OS/161 MIPS ELF

file section contents: cs350-objdump -s segments

CS350 Operating Systems Spring 2014

Virtual Memory 31

Contents of the Example Program’s .rodata Section

Contents of section .rodata:

400200 abcddcba 00000000 00000000 00000000

400210 48656c6c 6f20576f 726c640a 00000000 Hello World.....

...

const int z = 0xabcddcba

If compiler doesn’t prevent z from being written,

then the hardware could.

0x48 = ’H’ 0x65 = ’e’ 0x0a = ’\n’ 0x00 = ’\0’

The .rodata section contains the “Hello World” string literal and the con-

stant integer variable z.

CS350 Operating Systems Spring 2014

Virtual Memory 32

Contents of the Example Program’s .data Section

Contents of section .data:

10000000 deadbeef 00400210 00000000 00000000@..........

...

Size = 0x10 bytes = 16 bytes (padding for alignment)

int x = deadbeef (4 bytes)

char const *str = "Hello World\n"; (4 bytes)

address of str = 0x10000004

value stored in str = 0x00400210.

NOTE: this is the address of the start

of the string literal in the .rodata section

The .data section contains the initialized global variables str and x.

CS350 Operating Systems Spring 2014

Virtual Memory 33

Contents of the Example Program’s .bss and .sbss Sections

...

10000000 D x

10000004 D str

10000010 S t3 ## S indicates sbss section

10000014 S t2

10000018 S t1

1000001c S errno

10000020 S __argv

10000030 B array ## B indicates bss section

10004030 A _end

10008000 A _gp

The t1, t2, and t3 variables are in the .sbss section. The array variable

is in the .bss section. There are no values for these variables in the ELF file,

as they are uninitialized. The cs350-nm program can be used to inspect

symbols defined in ELF files: cs350-nm -n <filename>, in this case

cs350-nm -n segments.

CS350 Operating Systems Spring 2014

Virtual Memory 34

An Address Space for the Kernel

• Each process has its own address space. What about the kernel?

• Three possibilities:

Kernel in physical space: disable address translation in privileged system

execution mode, enable it in unprivileged mode

Kernel in separate virtual address space: need a way to change address

translation (e.g., switch page tables) when moving between privileged and

unprivileged code

Kernel mapped into portion of address space of every process: OS/161,

Linux, and other operating systems use this approach

– memory protection mechanism is used to isolate the kernel from

applications

– one advantage of this approach: application virtual addresses (e.g.,

system call parameters) are easy for the kernel to use

CS350 Operating Systems Spring 2014

Virtual Memory 35

The Kernel in Process’ Address Spaces

Process 1 Process 2

Address Space Address Space

Kernel

(shared, protected)

Attempts to access kernel code/data in user mode result in memory protec-

tion exceptions, not invalid address exceptions.

CS350 Operating Systems Spring 2014

Virtual Memory 36

Address Translation on the MIPS R3000

user space kernel space
2 GB 2 GB

0x00000000 0xffffffff0x80000000

0xa0000000

0xc0000000

kseg0 kseg1 kseg2kuseg

1 GB0.5GB0.5GB

unmapped, cached unmapped, uncached

TLB mapped

In OS/161, user programs live in kuseg, kernel code and data structures live

in kseg0, devices are accessed through kseg1, and kseg2 is not used.

CS350 Operating Systems Spring 2014

Virtual Memory 37

The Problem of Sparse Address Spaces

growth

text (program code) and read−only data

data

0x10000000 − 0x101200b0

0x00000000 0xffffffff

stack
high end of stack: 0x7fffffff

0x00400000 − 0x00401a0c

• Consider the page table for user/testbin/sort, assuming a 4 Kbyte page:

– need 219 page table entries (PTEs) to cover the bottom half of the virtual

address space (2GB).

– the text segment occupies 2 pages, the data segment occupies 289 pages,

and OS/161 sets the initial stack size to 12 pages, so there are only 303 valid

pages (of 219).

• If dynamic relocation is used, the kernel will need to map a 2GB address space

contiguously into physical memory, even though only a tiny fraction of that

address space is actually used by the program.

• If paging is used, the kernel will need to create a page table with 219 PTEs,

almost all of which are marked as not valid.

CS350 Operating Systems Spring 2014

Virtual Memory 38

Handling Sparse Address Spaces

• Use dynamic relocation, but provide separate base and length for each valid

segment of the address space. Do not map the rest of the address space.

– OS/161 dumbvm uses a simple variant of this idea, which depends on

having a software-managed TLB.

– A more general approach is segmentation.

• A second approach is to use multi-level paging

– replace the single large linear page table with a hierarchy of smaller page

tables

– a sparse address space can be mapped by a sparse tree hierarchy

– easier to manage several smaller page tables than one large one (remember:

each page table must be continguous in physical memory!)

CS350 Operating Systems Spring 2014

Virtual Memory 39

Segmentation

• Often, programs (like sort) need several virtual address segments, e.g, for

code, data, and stack.

• With segmentation, a virtual address can be thought of as having two parts:

(segment ID, address within segment)

• Each segment also has a length.

CS350 Operating Systems Spring 2014

Virtual Memory 40

Segmented Address Space Diagram

�������
�������
�������
�������

�������
�������
�������
�������

����
����
����
����

����
����
����
����

����
����
����

����
����
����

�������
�������
�������
�������

�������
�������
�������
�������

����
����
����

����
����
����

����
����
����
����

����
����
����
����

2
m

−1

0

physical memory

Proc 2

Proc 1

segment 1

segment 0

segment 2

segment 0

CS350 Operating Systems Spring 2014

Virtual Memory 41

Mechanism for Translating Segmented Addresses

v bits

m bits

m bits

physical address

+seg # offset

virtual address

register
segment table base

startlength

segment table

protection

This translation mechanism requires physically contiguous allocation of seg-

ments.

CS350 Operating Systems Spring 2014

Virtual Memory 42

Handling Sparse Paged Virtual Address Spaces

• Large paged virtual address spaces require large page tables.

• example: 248 byte virtual address space, 8 Kbyte (213 byte) pages, 4 byte page

table entries means

248

213
22 = 237 bytes per page table

• page tables for large address spaces may be very large, and

– they must be in memory, and

– they must be physically contiguous

CS350 Operating Systems Spring 2014

Virtual Memory 43

Two-Level Paging

m bits

register
page table base

frame # offsetpage # offsetpage #

physical address (m bits)

virtual address (v bits)

level 1

level 2

page table

page tables

CS350 Operating Systems Spring 2014

Virtual Memory 44

Combining Segmentation and Paging

�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
��������
����
����

����
����
����
�������
�������
�������
�������

�������
�������
�������
�������

2
m

−1

0

physical memory

Proc 2

Proc 1

segment 1

segment 0

segment 2

segment 0

CS350 Operating Systems Spring 2014

Virtual Memory 45

Combining Segmentation and Paging: Translation Mechanism

m bits

m bits

physical address

register
segment table base

segment table

protection

offset

virtual address

seg # page #

page table

length

v bits

frame # offset

page table

CS350 Operating Systems Spring 2014

Virtual Memory 46

Exploiting Secondary Storage

Goals:

• Allow virtual address spaces that are larger than the physical address space.

• Allow greater multiprogramming levels by using less of the available (primary)

memory for each process.

Method:

• Allow pages (or segments) from the virtual address space to be stored in

secondary storage, e.g., on disks, as well as primary memory.

• Move pages (or segments) between secondary storage and primary memory so

that they are in primary memory when they are needed.

CS350 Operating Systems Spring 2014

Virtual Memory 47

Paging Policies

When to Page?:

Demand paging brings pages into memory when they are used. Alternatively,

the OS can attempt to guess which pages will be used, and prefetch them.

What to Replace?:

Unless there are unused frames, one page must be replaced for each page that is

loaded into memory. A replacement policy specifies how to determine which

page to replace.

Similar issues arise if (pure) segmentation is used, only the unit of data trans-

fer is segments rather than pages. Since segments may vary in size, segmen-

tation also requires a placement policy, which specifies where, in memory, a

newly-fetched segment should be placed.

CS350 Operating Systems Spring 2014

Virtual Memory 48

Page Faults

• When paging is used, some valid pages may be loaded into memory, and some

may not be.

• To account for this, each PTE may contain a present bit, to indicate whether the

page is or is not loaded into memory

– V = 1, P = 1: page is valid and in memory (no exception occurs)

– V = 1, P = 0: page is valid, but is not in memory (exception!)

– V = 0, P = x: invalid page (exception!)

• If V = 0, or if V = 1 and P = 0, the MMU will generate an exception if a

process tries to access the page. This is called a page fault.

• To handle a page fault, the kernel operating system must:

– bring the missing page into memory, set P = 1 in the PTE

– while the missing page is being loaded, the faultin process is blocked

– return from the exception

• the processor will then retry the instrution that caused the page fault

CS350 Operating Systems Spring 2014

Virtual Memory 49

Page Faults in OS/161

• things are a bit different in systems with software-managed TLBs, such as

OS/161 on the MIPS processor

• MMUs with software-managed TLBs never check page tables, and thus do not

interpret P bits in page table entries

• In an MMU with a software-managed TLB, either there is a valid translation for

a page in the TLB, or there is not.

– If there is not, the MMU generates an exception. It is up to the kernel to

determine the reason for the exception. Is this:

∗ an access to a valid page that is not in memory (a page fault)?

∗ an access to a valid page that is in memory?

∗ an access to an invalid page?

– The kernel should ensure that a page has a translation in the TLB only if the

page is valid and in memory. (Why?)

CS350 Operating Systems Spring 2014

Virtual Memory 50

A Simple Replacement Policy: FIFO

• the FIFO policy: replace the page that has been in memory the longest

• a three-frame example:

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a d d d e e e e e e

Frame 2 b b b a a a a a c c c

Frame 3 c c c b b b b b d d

Fault ? x x x x x x x x x

CS350 Operating Systems Spring 2014

Virtual Memory 51

Optimal Page Replacement

• There is an optimal page replacement policy for demand paging.

• The OPT policy: replace the page that will not be referenced for the longest

time.

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a a a a a a a c c c

Frame 2 b b b b b b b b b d d

Frame 3 c d d d e e e e e e

Fault ? x x x x x x x

• OPT requires knowledge of the future.

CS350 Operating Systems Spring 2014

Virtual Memory 52

Other Replacement Policies

• FIFO is simple, but it does not consider:

Frequency of Use: how often a page has been used?

Recency of Use: when was a page last used?

Cleanliness: has the page been changed while it is in memory?

• The principle of locality suggests that usage ought to be considered in a

replacement decision.

• Cleanliness may be worth considering for performance reasons.

CS350 Operating Systems Spring 2014

Virtual Memory 53

Locality

• Locality is a property of the page reference string. In other words, it is a

property of programs themselves.

• Temporal locality says that pages that have been used recently are likely to be

used again.

• Spatial locality says that pages “close” to those that have been used are likely to

be used next.

In practice, page reference strings exhibit strong locality. Why?

CS350 Operating Systems Spring 2014

Virtual Memory 54

Least Recently Used (LRU) Page Replacement

• LRU is based on the principle of temporal locality: replace the page that has not

been used for the longest time

• To implement LRU, it is necessary to track each page’s recency of use. For

example: maintain a list of in-memory pages, and move a page to the front of

the list when it is used.

• Although LRU and variants have many applications, true LRU is difficult to

implement in virtual memory systems. (Why?)

CS350 Operating Systems Spring 2014

Virtual Memory 55

Least Recently Used: LRU

• the same three-frame example:

Num 1 2 3 4 5 6 7 8 9 10 11 12

Refs a b c d a b e a b c d e

Frame 1 a a a d d d e e e c c c

Frame 2 b b b a a a a a a d d

Frame 3 c c c b b b b b b e

Fault ? x x x x x x x x x x

CS350 Operating Systems Spring 2014

Virtual Memory 56

The “Use” Bit

• A use bit (or reference bit) is a bit found in each page table entry that:

– is set by the MMU each time the page is used, i.e., each time the MMU

translates a virtual address on that page

– can be read and cleared by the operating system

• The use bit provides a small amount of efficiently-maintainable usage

information that can be exploited by a page replacement algorithm.

CS350 Operating Systems Spring 2014

Virtual Memory 57

The Clock Replacement Algorithm

• The clock algorithm (also known as “second chance”) is one of the simplest

algorithms that exploits the use bit.

• Clock is identical to FIFO, except that a page is “skipped” if its use bit is set.

• The clock algorithm can be visualized as a victim pointer that cycles through

the page frames. The pointer moves whenever a replacement is necessary:

while use bit of victim is set

clear use bit of victim

victim = (victim + 1) % num_frames

choose victim for replacement

victim = (victim + 1) % num_frames

CS350 Operating Systems Spring 2014

Virtual Memory 58

Page Cleanliness: the “Modified” Bit

• A page is modified (sometimes called dirty) if it has been changed since it was

loaded into memory.

• A modified page is more costly to replace than a clean page. (Why?)

• The MMU identifies modified pages by setting a modified bit in page table entry

of a page when a process writes to a virtual address on that page, i.e., when the

page is changed.

• The operating system can clear the modified bit when it cleans the page

• The modified bit potentially has two roles:

– Indicates which pages need to be cleaned.

– Can be used to influence the replacement policy.

CS350 Operating Systems Spring 2014

Virtual Memory 59

How Much Physical Memory Does a Process Need?

• Principle of locality suggests that some portions of the process’s virtual address

space are more likely to be referenced than others.

• A refinement of this principle is the working set model of process reference

behaviour.

• According to the working set model, at any given time some portion of a

program’s address space will be heavily used and the remainder will not be.

The heavily used portion of the address space is called the working set of the

process.

• The working set of a process may change over time.

• The resident set of a process is the set of pages that are located in memory.

According to the working set model, if a process’s resident set includes its

working set, it will rarely page fault.

CS350 Operating Systems Spring 2014

Virtual Memory 60

Resident Set Sizes (Example)

PID VSZ RSS COMMAND

805 13940 5956 /usr/bin/gnome-session

831 2620 848 /usr/bin/ssh-agent

834 7936 5832 /usr/lib/gconf2/gconfd-2 11

838 6964 2292 gnome-smproxy

840 14720 5008 gnome-settings-daemon

848 8412 3888 sawfish

851 34980 7544 nautilus

853 19804 14208 gnome-panel

857 9656 2672 gpilotd

867 4608 1252 gnome-name-service

CS350 Operating Systems Spring 2014

Virtual Memory 61

Thrashing and Load Control

• What is a good multiprogramming level?

– If too low: resources are idle

– If too high: too few resources per process

• A system that is spending too much time paging is said to be thrashing.

Thrashing occurs when there are too many processes competing for the

available memory.

• Thrashing can be cured by load shedding, e.g.,

– Killing processes (not nice)

– Suspending and swapping out processes (nicer)

CS350 Operating Systems Spring 2014

Virtual Memory 62

Swapping Out Processes

• Swapping a process out means removing all of its pages from memory, or

marking them so that they will be removed by the normal page replacement

process. Suspending a process ensures that it is not runnable while it is swapped

out.

• Which process(es) to suspend?

– low priority processes

– blocked processes

– large processes (lots of space freed) or small processes (easier to reload)

• There must also be a policy for making suspended processes ready when system

load has decreased.

CS350 Operating Systems Spring 2014

