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Sys/161 LAMEbus Device Examples

• timer/clock - current time, timer, beep

• disk drive - persistent storage

• serial console - character input/output

• text screen - character-oriented graphics

• network interface - packet input/output
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Device Register Example: Sys/161 timer/clock

Offset Size Type Description

0 4 status current time (seconds)

4 4 status current time (nanoseconds)

8 4 command restart-on-expiry

12 4 status and command interrupt (reading clears)

16 4 status and command countdown time (microseconds)

20 4 command speaker (causes beeps)
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Device Register Example: Sys/161 disk controller

Offset Size Type Description

0 4 status number of sectors

4 4 status and command status

8 4 command sector number

12 4 status rotational speed (RPM)

32768 512 data transfer buffer
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Device Drivers

• a device driver is a part of the kernel that interacts with a device

• example: write character to serial output device

write character to device data register

write output command to device command register

repeat {

read device status register

} until device status is ‘‘completed’’

clear the device status register

• this example illustrates polling: the driver repeatedly checks whether the device

is finished, until it is finished.
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Another Polling Example

write target sector number into sector number register

write output data (512 bytes) into transfer buffer

write ‘‘write’’ command into status register

repeat {

read status register

} until status is ‘‘completed’’ (or error)

clear the status register

Disk operations are slow. The device driver may have to poll for a long time.
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Using Interrupts to Avoid Polling

• polling can be avoided if the device can use interrupts to indicate that it is

finished

• example: disk write operation using interrupts:

write target sector number into sector number register

write output data (512 bytes) into transfer buffer

write ’’write’’ command into status register

block until device generates completion interrupt

read status register to check for errors

clear status register

• while thread running the driver is blocked, the CPU is free to run other threads

• kernel synchronization primitives (e.g., semaphores) can be used to implement

blocking
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Device Data Transfer

• Sometimes, a device operation will involve a large chunk of data - much larger

than can be moved with a single instruction.

– example: disk read or write operation

• Devices may have data buffers for such data - but how to get the data between

the device and memory?

– Option 1: program-controlled I/O

The device driver moves the data iteratively, one word at a time.

∗ Simple, but the CPU is busy while the data is being transferred.

– Option 2: direct memory access (DMA)

∗ CPU is not busy during data transfer, and is free to do something else.

Sys/161 LAMEbus devices do program-controlled I/O.
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Direct Memory Access (DMA)

• DMA is used for block data transfers between devices (e.g., a disk controller)

and memory

• Under DMA, the CPU initiates the data transfer and is notified when the transfer

is finished. However, the device (not the CPU) controls the transfer itself.

bus

CPU CPU

Memory
keyboard mouse

Graphics
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3

1

1. CPU issues DMA request to controller

2. controller directs data transfer

3. controller interrupts CPU
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Device Driver for Disk Write with DMA

write target disk sector number into sector number register

write source memory address into address register

write ’’write’’ command into status register

block (sleep) until device generates completion interrupt

read status register to check for errors

clear status register

Note: driver no longer copies data into device transfer buffer
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Accessing Devices

• how can a device driver access device registers?

• Option 1: special I/O instructions

– such as in and out instructions on x86

– device registers are assigned “port” numbers

– instructions transfer data between a specified port and a CPU register

–

• Option 2: memory-mapped I/O

– each device register has a physical memory address

– device drivers can read from or write to device registers using normal load

and store instructions, as though accessing memory
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MIPS/OS161 Physical Address Space

RAM

devices: 0x1fe00000 − 0x1fffffff

ROM: 0x1fc00000 − 0x1fdfffff

0x00000000 0xffffffff

0x1fe00000 0x1fffffff

64 KB device "slot"

Each device is assigned to one of 32 64KB device “slots”. A device’s regis-

ters and data buffers are memory-mapped into its assigned slot.
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Logical View of a Disk Drive

• disk is an array of numbered blocks (or sectors)

• each block is the same size (e.g., 512 bytes)

• blocks are the unit of transfer between the disk and memory

– typically, one or more contiguous blocks can be transferred in a single

operation

• storage is non-volatile, i.e., data persists even when the device is without power
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A Disk Platter’s Surface
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CS350 Operating Systems Spring 2014

I/O 16

Physical Structure of a Disk Drive
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Simplified Cost Model for Disk Block Transfer

• moving data to/from a disk involves:

seek time: move the read/write heads to the appropriate cylinder

rotational latency: wait until the desired sectors spin to the read/write heads

transfer time: wait while the desired sectors spin past the read/write heads

• request service time is the sum of seek time, rotational latency, and transfer time

tservice = tseek + trot + ttransfer

• note that there are other overheads but they are typically small relative to these

three
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Rotational Latency and Transfer Time

• rotational latency depends on the rotational speed of the disk

• if the disk spins at ω rotations per second:

0 ≤ trot ≤
1

ω

• expected rotational latency:

t̄rot =
1

2ω

• transfer time depends on the rotational speed and on the amount of data

transferred

• if k sectors are to be transferred and there are T sectors per track:

ttransfer =
k

Tω
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Seek Time

• seek time depends on the speed of the arm on which the read/write heads are

mounted.

• a simple linear seek time model:

– tmaxseek is the time required to move the read/write heads from the

innermost cylinder to the outermost cylinder

– C is the total number of cylinders

• if k is the required seek distance (k > 0):

tseek(k) =
k

C
tmaxseek
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Performance Implications of Disk Characteristics

• larger transfers to/from a disk device are more efficient than smaller ones. That

is, the cost (time) per byte is smaller for larger transfers. (Why?)

• sequential I/O is faster than non-sequential I/O

– sequential I/O operations eliminate the need for (most) seeks

– disks use other techniques, like track buffering, to reduce the cost of

sequential I/O even more
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Job Scheduling Model

• problem scenario: a set of jobs needs to be executed using a single server, on

which only one job at a time may run

• for the ith job, we have an arrival time ai and a run time ri

• after the ith job has run on the server for total time ri, it finishes and leaves the

system

• a job scheduler decides which job should be running on the server at each point

in time

• let si (si ≥ ai) represent the time at which the ith job first runs, and let fi

represent the time at which the ith job finishes

– the turnaround time of the ith job is fi − ai

– the response time of the ith job is si − ai
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Basic Non-Preemptive Schedulers: FCFS and SJF

• FCFS: runs jobs in arrival time order.

– simple, avoids starvation

– pre-emptive variant: round-robin

• SJF: shortest job first - run jobs in increasing order of ri

– minimizes average turnaround time

– long jobs may starve

– pre-emptive variant: SRTF (shortest remaining time first)
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FCFS Gantt Chart Example
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SJF Example
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Round Robin Example
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SRTF Example

time
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CPU Scheduling

• CPU scheduling is job scheduling where:

– the server is a CPU (or a single core of a multi-core CPU)

– the jobs are ready threads

∗ a thread “arrives” when it becomes ready, i.e., when it is first created, or

when it wakes up from sleep

∗ the run-time of the thread is the amount of time that it will run before it

either finishes or blocks

– thread run times are typically not known in advance by the scheduler

• typical scheduler objectives

– responsiveness - low response time for some or all threads

– “fair” sharing of the CPU

– efficiency - there is a cost to switching

CS350 Operating Systems Spring 2014

Scheduling 8

Prioritization

• CPU schedulers are often expected to consider process or thread priorities

• priorities may be

– specified by the application (e.g., Linux

setpriority/sched setscheduler)

– chosen by the scheduler

– some combination of these

• two approaches to scheduling with priorites

1. schedule the highest priority thread

2. weighted fair sharing

– let pi be the priority of the ith thread

– try to give each thread a “share” of the CPU in proportion to its priority:

pi∑
j pj

(1)
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Multi-level Feedback Queues

• objective: good responsiveness for interactive processes

– threads of interactive processes block frequently, have short run times

• idea: gradually diminish priority of threads with long run times and infrequent

blocking

– if a thread blocks before its quantum is used up, raise its priority

– if a thread uses its entire quantum, lower its priority
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Multi-level Feedback Queues (Algorithm)

• scheduler maintains several round-robin ready queues

– highest priority threads in queue Q0, lower priority in Q1, still lower in Q2,

and so on.

• scheduler always chooses thread from the lowest non-empty queue

• threads in queue Qi use quantum qi, and qi ≤ qj if i < j

• newly ready threads go into ready queue Q0

• a level i thread that is preempted goes into queue Qi+1

This basic algorithm may starve threads in lower queues. Various enhance-

ments can avoid this, e.g, periodically migrate all threads into Q0.
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Multilevel Feedback Queues

• objective: good responsiveness for interactive processes

– threads of interactive processes block frequently, have short run times

• idea: gradually diminish priority of threads with long run times and infrequent

blocking

• algorithm:

– scheduler maintains several ready queues

– scheduler never chooses a thread in ready queue i if there are threads in any

ready queue j < i.

– threads in ready queue i use quantum qi, and qi ≤ qj if i < j

– newly ready threads go into ready queue q0

– a level i thread that is preempted goes into the level i+ 1 ready queue

– plus: some rule for raising the priority of threads in lower queues
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3 Level Feedback Queue State Diagram
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Linux CFQ Scheduler - Key Ideas

• “Completely Fair Queueing” - a weighted fair sharing approach

• suppose that ci is the actual amount of time that the scheduler has allowed the

ith thread to run.

• on an ideally shared processor, we would expect c0

∑
j
pj

p0

= c1

∑
j
pj

p1

= · · ·

• CFQ calls ci

∑
j
pj

pi
the virtual runtime of the ith thread, and tracks it for each

thread

• CFQ chooses the thread with the lowest virtual runtime, and runs it until some

other thread’s virtual runtime is lower (subject to a minimum runtime quantum)

– virtual runtime advances more slowly for higher priority threads, so they get

longer time slices

– all ready threads run regularly, so good responsiveness
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Scheduling on Multi-Core Processors

core

core

core

core

core

core

core

core

per core ready queue(s) vs. shared ready queue(s)
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Scalability and Cache Affinity

• Contention and Scalability

– access to shared ready queue is a critical section, mutual exclusion needed

– as number of cores grows, contention for ready queue becomes a problem

– per core design scales to a larger number of cores

• CPU cache affinity

– as thread runs, data it accesses is loaded into CPU cache(s)

– moving the thread to another core means data must be reloaded into that

core’s caches

– as thread runs, it acquires an affinity for one core because of the cached data

– per core design benefits from affinity by keeping threads on the same core

– shared queue design does not

CS350 Operating Systems Spring 2014

Scheduling 16

Load Balancing

• in per-core design, queues may have different lengths

• this results in load imbalance across the cores

– cores may be idle while others are busy

– threads on lightly loaded cores get more CPU time than threads on heavily

loaded cores

• not an issue in shared queue design

• per-core designs typically need some mechanism for thread migration to

address load imbalances

– migration means moving threads from heavily loaded cores to lightly loaded

cores
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Disk Head Scheduling

• goal: reduce seek times by controlling the order in which requests are serviced

• disk head scheduling may be performed by the controller, by the operating

system, or both

• for disk head scheduling to be effective, there must be a queue of outstanding

disk requests (otherwise there is nothing to reorder)

• an on-line approach is required: the disk request queue is not static
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FCFS Disk Head Scheduling

• handle requests in the order in which they arrive

• fair and simple, but no optimization of seek times

1 50 100 200150

14 37 53 65 70 122 130 183

arrival order: 183 37 122 14 130 65 70

head

104

104
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Shortest Seek Time First (SSTF)

• choose closest request (a greedy approach)

• seek times are reduced, but requests may starve

1 50 100 200150

14 37 53 65 70 122 130 183

arrival order: 183 37 122 14 130 65 70

head

104

104
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Elevator Algorithms (SCAN)

• Under SCAN, aka the elevator algorithm, the disk head moves in one direction

until there are no more requests in front of it, then reverses direction.

• there are many variations on this idea

• SCAN reduces seek times (relative to FCFS), while avoiding starvation
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SCAN Example

1 50 100 200150

14 37 53 65 70 122 130 183

arrival order: 183 37 122 14 130 65 70

head

104

104
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Files and File Systems

• files: persistent, named data objects

– data consists of a sequence of numbered bytes

– file may change size over time

– file has associated meta-data

∗ examples: owner, access controls, file type, creation and access

timestamps

• file system: a collection of files which share a common name space

– allows files to be created, destroyed, renamed, . . .
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File Interface

• open, close

– open returns a file identifier (or handle or descriptor), which is used in

subsequent operations to identify the file. (Why is this done?)

• read, write, seek

– read copies data from a file into a virtual address space

– write copies data from a virtual address space into a file

– seek enables non-sequential reading/writing

• get/set file meta-data, e.g., Unix fstat, chmod
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File Read
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   space

length

vaddr

length

file

fileoffset (implicit)

read(fileID, vaddr, length)
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File Position

• each file descriptor (open file) has an associated file position

• read and write operations

– start from the current file position

– update the current file position

• this makes sequential file I/O easy for an application to request

• for non-sequential (random) file I/O, use:

– a seek operation (lseek) to adjust file position before reading or writing

– a positioned read or write operation, e.g., Unix pread, pwrite:

pread(fileId,vaddr,length,filePosition)
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Sequential File Reading Example (Unix)

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i++) {

read(f,(void *)buf,512);

}

close(f);

Read the first 100 ∗ 512 bytes of a file, 512 bytes at a time.
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File Reading Example Using Seek (Unix)

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=1; i<=100; i++) {

lseek(f,(100-i)*512,SEEK_SET);

read(f,(void *)buf,512);

}

close(f);

Read the first 100 ∗ 512 bytes of a file, 512 bytes at a time, in reverse order.
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File Reading Example Using Positioned Read

char buf[512];

int i;

int f = open("myfile",O_RDONLY);

for(i=0; i<100; i+=2) {

pread(f,(void *)buf,512,i*512);

}

close(f);

Read every second 512 byte chunk of a file, until 50 have been read.
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Directories and File Names

• A directory maps file names (strings) to i-numbers

– an i-number is a unique (within a file system) identifier for a file or directory

– given an i-number, the file system can file the data and meta-data the file

• Directories provide a way for applications to group related files

• Since directories can be nested, a filesystem’s directories can be viewed as a

tree, with a single root directory.

• In a directory tree, files are leaves

• Files may be identified by pathnames, which describe a path through the

directory tree from the root directory to the file, e.g.:

/home/user/courses/cs350/notes/filesys.pdf

• Directories also have pathnames

• Applications refer to files using pathnames, not i-numbers

CS350 Operating Systems Spring 2014



File Systems 9

Hierarchical Namespace Example

= directory

= file

Key

x
y

z

a

b
ck l

f g

a b
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Hard Links

• a hard link is an association between a name (string) and an i-number

– each entry in a directory is a hard link

• when a file is created, so is a hard link to that file

– open(/a/b/c,O CREAT|O TRUNC)

– this creates a new file if a file called /a/b/c does not already exist

– it also creates a hard link to the file in the directory /a/b

• Once a file is created, additional hard links can be made to it.

– example: link(/x/b,/y/k/h) creates a new hard link h in directory

/y/k. The link refers to the i-number of file /x/b, which must exist.

• linking to an existing file creates a new pathname for that file

– each file has a unique i-number, but may have multiple pathnames

• Not possible to link to a directory (to avoid cycles)
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Unlinking and Referential Integrity

• hard links can be removed:

– unlink(/x/b)

• the file system ensures that hard links have referential integrity, which means

that if the link exists, the file that it refers to also exists.

– When a hard link is created, it refers to an existing file.

– There is no system call to delete a file. Instead, a file is deleted when its last

hard link is removed.

CS350 Operating Systems Spring 2014

File Systems 12

Symbolic Links

• a symbolic link, or soft link, is an association between a name (string) and a

pathname.

– symlink(/z/a,/y/k/m) creates a symbolic link m in directory /y/k.

The symbolic link refers to the pathname /z/a.

• If an application attempts to open /y/k/m, the file system will

1. recognize /y/k/m as a symbolic link, and

2. attempt to open /z/a instead

• referential integrity is not preserved for symbolic links

– in the example above, /z/a need not exist!
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UNIX/Linux Link Example (1 of 3)

% cat > file1

This is file1.

<cntl-d>

% ls -li

685844 -rw------- 1 user group 15 2008-08-20 file1

% ln file1 link1

% ln -s file1 sym1

% ln not-here link2

ln: not-here: No such file or directory

% ln -s not-here sym2

Files, hard links, and soft/symbolic links.
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UNIX/Linux Link Example (2 of 3)

% ls -li

685844 -rw------- 2 user group 15 2008-08-20 file1

685844 -rw------- 2 user group 15 2008-08-20 link1

685845 lrwxrwxrwx 1 user group 5 2008-08-20 sym1 -> file1

685846 lrwxrwxrwx 1 user group 8 2008-08-20 sym2 -> not-here

% cat file1

This is file1.

% cat link1

This is file1.

% cat sym1

This is file1.

% cat sym2

cat: sym2: No such file or directory

% /bin/rm file1

Accessing and manipulating files, hard links, and soft/symbolic links.
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UNIX/Linux Link Example (3 of 3)

% ls -li

685844 -rw------- 1 user group 15 2008-08-20 link1

685845 lrwxrwxrwx 1 user group 5 2008-08-20 sym1 -> file1

685846 lrwxrwxrwx 1 user group 8 2008-08-20 sym2 -> not-here

% cat link1

This is file1.

% cat sym1

cat: sym1: No such file or directory

% cat > file1

This is a brand new file1.

<cntl-d>

% ls -li

685847 -rw------- 1 user group 27 2008-08-20 file1

685844 -rw------- 1 user group 15 2008-08-20 link1

685845 lrwxrwxrwx 1 user group 5 2008-08-20 sym1 -> file1

685846 lrwxrwxrwx 1 user group 8 2008-08-20 sym2 -> not-here

% cat link1

This is file1.

% cat sym1

This is a brand new file1.

Different behaviour for hard links and soft/symbolic links.
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Multiple File Systems

• it is not uncommon for a system to have multiple file systems

• some kind of global file namespace is required

• two examples:

DOS/Windows: use two-part file names: file system name, pathname within

file system

– example: C:\user\cs350\schedule.txt

Unix: create single hierarchical namespace that combines the namespaces of

two file systems

– Unix mount system call does this

• mounting does not make two file systems into one file system

– it merely creates a single, hierarchical namespace that combines the

namespaces of two file systems

– the new namespace is temporary - it exists only until the file system is

unmounted
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Unix mount Example

a

q

rx

g

a

q

rx

g

"root" file system file system X

result of mount (file system X, /x/a)

x y
z

a
b

ck la b

x y
z

a
b

ck la b
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Links and Multiple File Systems

• hard links cannot cross file system boundaries

– each hard link maps a name to an i-number, which is unique only within a

file system

• for example, even after the mount operation illustrated on the previous slide,

link(/x/a/x/g,/z/d) would result in an error, because the new link,

which is in the root file system refers to an object in file system X

• soft links do not have this limitation

• for example, after the mount operation illustrated on the previous slide:

– symlink(/x/a/x/g,/z/d) would succeed

– open(/z/d) would succeed, with the effect of opening /z/a/x/g.

• even if the symlink operation were to occur before the mount command, it

would succeed
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File System Implementation

• what needs to be stored persistently?

– file data

– file meta-data

– directories and links

– file system meta-data

• non-persistent information

– open files per process

– file position for each open file

– cached copies of persistent data
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Space Allocation and Layout

• space on secondary storage may be allocated in fixed-size chunks or in chunks

of varying size

• fixed-size chunks: blocks

– simple space management

– internal fragmentation (unused space in allocated blocks)

• variable-size chunks: extents

– more complex space management

– external fragmentation (wasted unallocated space)
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fixed−size allocation

variable−size allocation

Layout matters on secondary storage! Try to lay a file out sequentially, or in

large sequential extents that can be read and written efficiently.
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File Indexing

• where is the data for a given file?

• common solution: per-file indexing

– for each file, an index with pointers to data blocks or extents

∗ in extent-based systems, need pointer and length for each extent

• how big should the index be?

– need to accommodate both small files and very large files

– approach: allow different index sizes for different files
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i-nodes

• per file index structure, fixed size

• holds file meta-data, and small number of pointers to data blocks

– for small files, pointers in the i-node are sufficient to point to all data blocks

– for larger files, allocate additional indirect blocks, which hold pointers to

additional data blocks

• i-node table holds i-nodes for all files in a file system

– in persistent storage

– given i-number, can directly determine location of corresponding i-node in

the i-node table
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Example: Linux ext3 i-nodes

• i-node fields

– file type

– file permissions

– file length

– number of file blocks

– time of last file access

– time of last i-node update, last file update

– number of hard links to this file

– 12 direct data block pointers

– one single, one double, one triple indirect data block pointer

• i-node size: 128 bytes

• i-node table: broken into smaller tables, each in a known location on the

secondary storage device (disk)
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i-node Diagram

attribute values

single indirect

direct
direct
direct

data blocks

double indirect

triple indirect

indirect blocks

i−node (not to scale!)
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Directories

• Implemented as a special type of file.

• Directory file contains directory entries, each consisting of

– a file name (component of a path name)

– the corresponding i-number

• Directory files can be read by application programs (e.g., ls)

• Directory files are only updated by the kernel, in response to file system

operations, e.g, create file, create link

• Application programs cannot write directly to directory files. (Why not?)
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Implementing Hard Links

• hard links are simply directory entries

• for example, consider:

link(/y/k/g,/z/m)

• to implement this:

1. find out the internal file identifier for /y/k/g

2. create a new entry in directory /z

– file name in new entry is m

– file identifier (i-number) in the new entry is the one discovered in step 1
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Implementing Soft Links

• soft links can be implemented as a special type of file

• for example, consider:

symlink(/y/k/g,/z/m)

• to implement this:

– create a new symlink file

– add a new entry in directory /z

∗ file name in new entry is m

∗ i-number in the new entry is the i-number of the new symlink file

– store the pathname string “/y/k/g” as the contents of the new symlink file
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Pathname Translation

• input: a file pathname

• output: the i-number of the file the pathname refers to

• common to many file system calls, e.g., open

• basic idea (without error checking):

i = i-number of root directory

while (n = next component of pathname) {

if i is not a directory then return ERROR

i = lookup n in directory i

if (i is a symbolic link file) {

i = translate(link)

}

}

return i
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In-Memory (Non-Persistent) Structures

• per process

– descriptor table

∗ which file descriptors does this process have open?

∗ to which file does each open descriptor refer?

∗ what is the current file position for each descriptor?

• system wide

– open file table

∗ which files are currently open (by any process)?

– i-node cache

∗ in-memory copies of recently-used i-nodes

– block cache

∗ in-memory copies of data blocks and indirect blocks
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Problems Caused by Failures

• a single logical file system operation may require several disk I/O operations

• example: deleting a file

– remove entry from directory

– remove file index (i-node) from i-node table

– mark file’s data blocks free in free space index

• what if, because of a failure, some but not all of these changes are reflected on

the disk?

• system failure will destroy in-memory file system structures

• persistent structures should be crash consistent, i.e., should be consistent

when system restarts after a failure
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Fault Tolerance

• special-purpose consistency checkers (e.g., Unix fsck in Berkeley FFS, Linux

ext2)

– runs after a crash, before normal operations resume

– find and attempt to repair inconsistent file system data structures, e.g.:

∗ file with no directory entry

∗ free space that is not marked as free

• journaling (e.g., Veritas, NTFS, Linux ext3)

– record file system meta-data changes in a journal (log), so that sequences of

changes can be written to disk in a single operation

– after changes have been journaled, update the disk data structures

(write-ahead logging)

– after a failure, redo journaled updates in case they were not done before the

failure
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Interprocess Communication Mechanisms

• shared storage

– shared virtual memory

– shared files

• message-based

– signals

– sockets

– pipes

– . . .
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Message Passing

operating system

sender receiver
send receive

operating system

sender receiver
send receive

Direct Message Passing

Indirect Message Passing

If message passing is indirect, the message passing system must have some

capacity to buffer (store) messages.
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Properties of Message Passing Mechanisms

Directionality:

• simplex (one-way), duplex (two-way)

• half-duplex (two-way, but only one way at a time)

Message Boundaries:

datagram model: message boundaries

stream model: no boundaries

Connections: need to connect before communicating?

• in connection-oriented models, recipient is specified at time of connection,

not by individual send operations. All messages sent over a connection have

the same recipient.

• in connectionless models, recipient is specified as a parameter to each send

operation.

Reliability:

• can messages get lost? reordered? damaged?
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Sockets

• a socket is a communication end-point

• if two processes are to communicate, each process must create its own socket

• two common types of sockets

stream sockets: support connection-oriented, reliable, duplex communication

under the stream model (no message boundaries)

datagram sockets: support connectionless, best-effort (unreliable), duplex

communication under the datagram model (message boundaries)

• both types of sockets also support a variety of address domains, e.g.,

Unix domain: useful for communication between processes running on the

same machine

INET domain: useful for communication between process running on

different machines that can communicate using IP protocols.
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Using Datagram Sockets (Receiver)

s = socket(addressType, SOCK_DGRAM);

bind(s,address);

recvfrom(s,buf,bufLength,sourceAddress);

. . .

close(s);

• socket creates a socket

• bind assigns an address to the socket

• recvfrom receives a message from the socket

– buf is a buffer to hold the incoming message

– sourceAddress is a buffer to hold the address of the message sender

• both buf and sourceAddress are filled by the recvfrom call
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Using Datagram Sockets (Sender)

s = socket(addressType, SOCK_DGRAM);

sendto(s,buf,msgLength,targetAddress)

. . .

close(s);

• socket creates a socket

• sendto sends a message using the socket

– buf is a buffer that contains the message to be sent

– msgLength indicates the length of the message in the buffer

– targetAddress is the address of the socket to which the message is to

be delivered
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More on Datagram Sockets

• sendto and recvfrom calls may block

– recvfrom blocks if there are no messages to be received from the

specified socket

– sendto blocks if the system has no more room to buffer undelivered

messages

• datagram socket communications are (in general) unreliable

– messages (datagrams) may be lost

– messages may be reordered

• The sending process must know the address of the receive process’s socket.
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Using Stream Sockets (Passive Process)

s = socket(addressType, SOCK_STREAM);

bind(s,address);

listen(s,backlog);

ns = accept(s,sourceAddress);

recv(ns,buf,bufLength);

send(ns,buf,bufLength);

. . .

close(ns); // close accepted connection

close(s); // don’t accept more connections

• listen specifies the number of connection requests for this socket that will be

queued by the kernel

• accept accepts a connection request and creates a new socket (ns)

• recv receives up to bufLength bytes of data from the connection

• send sends bufLength bytes of data over the connection.
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Notes on Using Stream Sockets (Passive Process)

• accept creates a new socket (ns) for the new connection

• sourceAddress is an address buffer. accept fills it with the address of the

socket that has made the connection request

• additional connection requests can be accepted using more accept calls on

the original socket (s)

• accept blocks if there are no pending connection requests

• connection is duplex (both send and recv can be used)
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Using Stream Sockets (Active Process)

s = socket(addressType, SOCK_STREAM);

connect(s,targetAddress);

send(s,buf,bufLength);

recv(s,buf,bufLength);

. . .

close(s);

• connect sends a connection request to the socket with the specified address

– connect blocks until the connection request has been accepted

• active process may (optionally) bind an address to the socket (using bind)

before connecting. This is the address that will be returned by the accept call

in the passive process

• if the active process does not choose an address, the system will choose one
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Illustration of Stream Socket Connections

(active)

(active)

(passive)

s s

s2

s3

process 1 process 2

process 3

queue of connection requests

socket
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Pipes

• pipes are communication objects (not end-points)

• pipes use the stream model and are connection-oriented and reliable

• some pipes are simplex, some are duplex

• pipes use an implicit addressing mechanism that limits their use to

communication between related processes, typically a child process and its

parent

• a pipe() system call creates a pipe and returns two descriptors, one for each

end of the pipe

– for a simplex pipe, one descriptor is for reading, the other is for writing

– for a duplex pipe, both descriptors can be used for reading and writing
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One-way Child/Parent Communication Using a Simplex Pipe

int fd[2];

char m[] = "message for parent";

char y[100];

pipe(fd); // create pipe

pid = fork(); // create child process

if (pid == 0) {

// child executes this

close(fd[0]); // close read end of pipe

write(fd[1],m,19);

. . .

} else {

// parent executes this

close(fd[1]); // close write end of pipe

read(fd[0],y,19);

. . .

}
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Illustration of Example (after pipe())

parent process

CS350 Operating Systems Spring 2014



Interprocess Communication 15

Illustration of Example (after fork())

parent process child process
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Illustration of Example (after close())

parent process child process
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Implementing IPC

• application processes use descriptors (identifiers) provided by the kernel to refer

to specific sockets and pipes, as well as files and other objects

• kernel descriptor tables (or other similar mechanism) are used to associate

descriptors with kernel data structures that implement IPC objects

• kernel provides bounded buffer space for data that has been sent using an IPC

mechanism, but that has not yet been received

– for IPC objects, like pipes, buffering is usually on a per object basis

– IPC end points, like sockets, buffering is associated with each endpoint

P1 P2

system call
interface

system call
interface

buffer

operating system
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Network Interprocess Communication

• some sockets can be used to connect processes that are running on different

machines

• the kernel:

– controls access to network interfaces

– multiplexes socket connections across the network

P2 P3P1

network interface

P2 P3P1

network interface

network

operating
system

operating
system
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