
I/O 1

Devices and I/O

key concepts

device registers, device drivers, program-controlled I/O, DMA, polling, disk drives,

disk head scheduling

reading

Three Easy Pieces: Chapters 36-37

CS350 Operating Systems Spring 2017

I/O 2

Sys/161 Device Examples

• timer/clock - current time, timer, beep

• disk drive - persistent storage

• serial console - character input/output

• text screen - character-oriented graphics

• network interface - packet input/output

CS350 Operating Systems Spring 2017



I/O 3

Device Register Example: Sys/161 timer/clock

Offset Size Type Description

0 4 status current time (seconds)

4 4 status current time (nanoseconds)

8 4 command restart-on-expiry

12 4 status and command interrupt (reading clears)

16 4 status and command countdown time (microseconds)

20 4 command speaker (causes beeps)

CS350 Operating Systems Spring 2017

I/O 4

Device Register Example: Serial Console

Offset Size Type Description

0 4 command and data character buffer

4 4 status writeIRQ

8 4 status readIRQ

CS350 Operating Systems Spring 2017



I/O 5

Device Drivers

• a device driver is a part of the kernel that interacts with a device

• example: write character to serial output device

// only one writer at a time

P(output device write semaphore)

// trigger the write operation

write character to device data register

repeat {

read writeIRQ register

} until status is ‘‘completed’’

// make the device ready again

write writeIRQ register to ack completion

V(output device write semaphore)

• this example illustrates polling: the kernel driver repeatedly checks device status

CS350 Operating Systems Spring 2017

I/O 6

Using Interrupts to Avoid Polling

Device Driver Write Handler:

// only one writer at a time

P(output device write semaphore)

// trigger write operation

write character to device data register

Interrupt Handler for Serial Device:

// make the device ready again

write writeIRQ register to ack completion

V(output device write semaphore)

CS350 Operating Systems Spring 2017



I/O 7

Accessing Devices

• how can a device driver access device registers?

• Option 1: special I/O instructions

– such as in and out instructions on x86

– device registers are assigned “port” numbers

– instructions transfer data between a specified port and a CPU register

• Option 2: memory-mapped I/O

– each device register has a physical memory address

– device drivers can read from or write to device registers using normal load

and store instructions, as though accessing memory

CS350 Operating Systems Spring 2017

I/O 8

MIPS/OS161 Physical Address Space

RAM

devices: 0x1fe00000 − 0x1fffffff

ROM: 0x1fc00000 − 0x1fdfffff

0x00000000 0xffffffff

0x1fe00000 0x1fffffff

64 KB device "slot"

Each device is assigned to one of 32 64KB device “slots”. A device’s regis-

ters and data buffers are memory-mapped into its assigned slot.

CS350 Operating Systems Spring 2017



I/O 9

Logical View of a Disk Drive

• disk is an array of numbered blocks (or sectors)

• each block is the same size (e.g., 512 bytes)

• blocks are the unit of transfer between the disk and memory

– typically, one or more contiguous blocks can be transferred in a single

operation

• storage is non-volatile, i.e., data persists even when the device is without power

CS350 Operating Systems Spring 2017

I/O 10

A Disk Platter’s Surface

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

28

29

30

31

32

33

34
35

36

37

38

39

seek
tracks

sectors

read/write head

arm

rotation

CS350 Operating Systems Spring 2017



I/O 11

Cost Model for Disk I/O

• moving data to/from a disk involves:

seek time: move the read/write heads to the appropriate cylinder

– depends on distance (in tracks) between previous request and current

request - called the seek distance

rotational latency: wait until the desired sectors spin to the read/write heads

– depends on the rotational speed of the disk

transfer time: wait while the desired sectors spin past the read/write heads

– depends on the rotational speed of the disk and the amount of data being

read/written

• request service time is the sum of seek time, rotational latency, and transfer time

CS350 Operating Systems Spring 2017

I/O 12

Seek, Rotation, and Transfer

• Seek time:

– If the next request is for data on the same track as the previous request, seek

distance and seek time will be zero.

– In the worst case, e.g., seek from outermost track to innermost track, seek

time may be 10 milliseconds or more.

• Rotational Latency:

– Consider a disk that spins at 12,000 RPM

– One complete rotation takes 5 millseconds.

– Rotational latency ranges from 0ms to 5ms.

• Transfer Time:

– Once positioned, the 12,000 RPM disk can read/write all data on a track in

one rotation (5ms)

– If only X% of the track’s sectors are being read/written, transfer time will be

X% of the complete rotation time (5ms).

CS350 Operating Systems Spring 2017



I/O 13

Performance Implications of Disk Characteristics

• larger transfers to/from a disk device are more efficient than smaller ones. That

is, the cost (time) per byte is smaller for larger transfers. (Why?)

• sequential I/O is faster than non-sequential I/O

– sequential I/O operations eliminate the need for (most) seeks

CS350 Operating Systems Spring 2017

I/O 14

Disk Head Scheduling

• goal: reduce seek times by controlling the order in which requests are serviced

• disk head scheduling may be performed by the device, by the operating system,

or both

• for disk head scheduling to be effective, there must be a queue of outstanding

disk requests (otherwise there is nothing to reorder)

• an on-line approach is required: new I/O requests may arrive at any time

CS350 Operating Systems Spring 2017



I/O 15

FCFS Disk Head Scheduling

• handle requests in the order in which they arrive

• fair and simple, but no optimization of seek times

1 50 100 200150

14 37 53 65 70 122 130 183

arrival order: 183 37 122 14 130 65 70

head

104

104

CS350 Operating Systems Spring 2017

I/O 16

Shortest Seek Time First (SSTF)

• choose closest request (a greedy approach)

• seek times are reduced, but requests may starve

1 50 100 200150

14 37 53 65 70 122 130 183

arrival order: 183 37 122 14 130 65 70

head

104

104

CS350 Operating Systems Spring 2017



I/O 17

Elevator Algorithms (SCAN)

• Under SCAN, aka the elevator algorithm, the disk head moves in one direction

until there are no more requests in front of it, then reverses direction.

• there are many variations on this idea

• SCAN reduces seek times (relative to FCFS), while avoiding starvation

CS350 Operating Systems Spring 2017

I/O 18

SCAN Example

1 50 100 200150

14 37 53 65 70 122 130 183

arrival order: 183 37 122 14 130 65 70

head

104

104

CS350 Operating Systems Spring 2017



I/O 19

Data Transfer To/From Devices

• Option 1: program-controlled I/O

The device driver moves the data between memory and a buffer on the device.

– Simple, but the CPU is busy while the data is being transferred.

• Option 2: direct memory access (DMA)

– The device itself is responsible for moving data to/from memory. CPU is not

busy during this data transfer, and is free to do something else.

Sys/161 disks do program-controlled I/O.

CS350 Operating Systems Spring 2017

I/O 20

Device Register Example: Sys/161 disk controller

Offset Size Type Description

0 4 status number of sectors

4 4 status and command status

8 4 command sector number

12 4 status rotational speed (RPM)

32768 512 data transfer buffer

CS350 Operating Systems Spring 2017



I/O 21

Writing to a Sys/161 Disk

Device Driver Write Handler:

// only one disk request at a time

P(disk semaphore)

copy data from memory to device transfer buffer

write target sector number to disk sector number register

write ‘‘write’’ command to disk status register

// wait for request to complete

P(disk completion semaphore)

V(disk semaphore)

Interrupt Handler for Disk Device

// make the device ready again

write disk status register to ack completion

V(disk completion semaphore)

CS350 Operating Systems Spring 2017

I/O 22

Reading From a Sys/161 Disk

Device Driver Read Handler:

// only one disk request at a time

P(disk semaphore)

write target sector number to disk sector number register

write ‘‘read’’ command to disk status register

// wait for request to complete

P(disk completion semaphore)

copy data from device transfer buffer to memory

V(disk semaphore)

Interrupt Handler for Disk Device

// make the device ready again

write disk status register to ack completion

V(disk completion semaphore)

CS350 Operating Systems Spring 2017



I/O 23

Direct Memory Access (DMA)

• DMA is used for block data transfers between devices (e.g., a disk) and memory

• Under DMA, the CPU initiates the data transfer and is notified when the transfer

is finished. However, the device (not the CPU) controls the transfer itself.

CPU

memory disk

1

2

3

1. CPU issues DMA request to device

2. device directs data transfer

3. device interrupts CPU on completion

CS350 Operating Systems Spring 2017

I/O 24

Solid State Drives(SSD)

• no mechanical parts; use integrated circuits for persistant storage instead of

magnetic surfaces

• DRAM: requires constant power to keep values

– transistors with capacitors

– capacitor holds microsecond charge; periodically refreshed by primary

power

• Flash Memory: traps electrons in quantum cage

– floating gate transistors

– usually NAND (not-and gates)

CS350 Operating Systems Spring 2017



I/O 25

SSD Data Arrangement

• logically divided into blocks and pages

– 2, 4 or 8KB pages

– 32KB-4MB blocks

• reads/writes at page level

– pages are initialized to 1s; can transition 1 → 0 at page level (i.e., write new

page)

– a high voltage is required to switch 0 → 1 (i.e., overwrite/delete page)

– cannot apply high voltage at page level, only to blocks

∗ overwriting/deleting data must be done at the block level

CS350 Operating Systems Spring 2017

I/O 26

Writing and Deleting from Flash Memory

• Naive Solution (slow):

– read whole block into memory

– re-initialize block (all page bits back to 1s)

– update block in memory; write back to SSD

• SSD controller handles requests (faster):

– mark page to be deleted/overwritten as invalid

– write to an unused page

– update translation table

– requires garbage collection

CS350 Operating Systems Spring 2017



I/O 27

Wear Leveling

• SSDs are not impervious

• blocks have limited number of write cycles

– if block is no longer writeable; it becomes ready-only

– when a certain % of blocks are read-only; disk becomes read-only

• SSD controller wear-levels; ensuring that write cycles are evenly spread across

all blocks

CS350 Operating Systems Spring 2017

I/O 28

Defragmentation

• defragmentation takes files spread across multiple, non-sequential pages and

makes them sequential

– it re-writes many pages of memory, possibly several times

– SSD random and sequential access have approximately the same cost

∗ no clear advantage to defragmenting

∗ extra, unnecessary writes performed by defragmenting—causes

pre-mature disk aging

CS350 Operating Systems Spring 2017


