I/O0 1

Devices and 1I/0O

key concepts

device registers, device drivers, program-controlled I/O, DMA, polling, disk drives,
disk head scheduling

reading
Three Easy Pieces: Chapters 36-37

CS350 Operating Systems Spring 2017



I/O0 2

Sys/161 Device Examples

e timer/clock - current time, timer, beep

e disk drive - persistent storage

e serial console - character input/output

e text screen - character-oriented graphics

e network interface - packet input/output

CS350 Operating Systems Spring 2017



I/O0 3

Device Register Example: Sys/161 timer/clock

Offset | Size Type Description
0 4 status current time (seconds)
4 4 status current time (nanoseconds)
8 4 command restart-on-expiry
12 4 status and command | interrupt (reading clears)
16 4 status and command | countdown time (microseconds)
20 4 command speaker (causes beeps)

CS350 Operating Systems Spring 2017



I/O0

Device Register Example: Serial Console

Offset | Size Type Description
0 4 command and data | character buffer
4 4 status writeIRQ
8 4 status readIRQ

CS350

Operating Systems

Spring 2017



I/O0 5

Device Drivers

e adevice driver 1s a part of the kernel that interacts with a device

e example: write character to serial output device

// only one writer at a time
P (output device write semaphore)
// trigger the write operation
write character to device data register
repeat {
read writeIRQ register
} until status is ‘completed’’
// make the device ready again
write writeIRQ register to ack completion

V (output device write semaphore)

e this example illustrates polling: the kernel driver repeatedly checks device status

CS350 Operating Systems Spring 2017



I/O0

Using Interrupts to Avoid Polling

Device Driver Write Handler:

// only one writer at a time
P (output device write semaphore)
// trigger write operation

write character to device data register

Interrupt Handler for Serial Device:

// make the device ready again
write writeIRQ register to ack completion

V (output device write semaphore)

CS350 Operating Systems

Spring 2017



I/O0 7

Accessing Devices

e how can a device driver access device registers?

e Option 1: special I/0 instructions
— such as in and out instructions on x86
— device registers are assigned “port” numbers

— 1nstructions transfer data between a specified port and a CPU register

e Option 2: memory-mapped 1I/O
— each device register has a physical memory address

— device drivers can read from or write to device registers using normal load
and store instructions, as though accessing memory

CS350 Operating Systems Spring 2017



I/O0 8

MIPS/OS161 Physical Address Space

0x00000000 Dqiiniiiig
RAM

ROM: 0x1£c00000 Ox1fdfffff
devices: 0x1fe00000 Ox1fffffff

64 KB device slot
0x1£fe00000 Ox 1 fffffef

Each device 1s assigned to one of 32 64KB device “slots”. A device’s regis-
ters and data buffers are memory-mapped into its assigned slot.

CS350 Operating Systems Spring 2017



I/O0 9

Logical View of a Disk Drive

e disk is an array of numbered blocks (or sectors)
e cach block is the same size (e.g., 512 bytes)

e blocks are the unit of transfer between the disk and memory

— typically, one or more contiguous blocks can be transferred in a single
operation

e storage is non-volatile, 1.e., data persists even when the device is without power

CS350 Operating Systems Spring 2017



I/O0

10

A Disk Platter’s Surface

Vs -~ rotation

seek

Q sectors

read/write head

CS350

Operating Systems Spring 2017



I/O0 11

Cost Model for Disk 1/0

e moving data to/from a disk involves:

seek time: move the read/write heads to the appropriate cylinder
— depends on distance (in tracks) between previous request and current
request - called the seek distance
rotational latency: wait until the desired sectors spin to the read/write heads

— depends on the rotational speed of the disk

transfer time: wait while the desired sectors spin past the read/write heads

— depends on the rotational speed of the disk and the amount of data being
read/written

e request service time 1s the sum of seek time, rotational latency, and transfer time

CS350 Operating Systems Spring 2017



I/O0 12

Seek, Rotation, and Transfer

e Seek time:

— If the next request 1s for data on the same track as the previous request, seek
distance and seek time will be zero.

— In the worst case, e.g., seek from outermost track to innermost track, seek
time may be 10 milliseconds or more.
e Rotational Latency:
— Consider a disk that spins at 12,000 RPM
— One complete rotation takes 5 millseconds.

— Rotational latency ranges from Oms to Sms.

e Transfer Time:

— Once positioned, the 12,000 RPM disk can read/write all data on a track in
one rotation (5ms)

— If only X% of the track’s sectors are being read/written, transfer time will be
X% of the complete rotation time (Sms).

CS350 Operating Systems Spring 2017



I/O0 13

Performance Implications of Disk Characteristics
e larger transfers to/from a disk device are more efficient than smaller ones. That
1s, the cost (time) per byte is smaller for larger transfers. (Why?)

e sequential I/0O 1s faster than non-sequential I/0

— sequential I/O operations eliminate the need for (most) seeks

CS350 Operating Systems Spring 2017



I/O0 14

Disk Head Scheduling

e goal: reduce seek times by controlling the order in which requests are serviced

e disk head scheduling may be performed by the device, by the operating system,
or both

e for disk head scheduling to be effective, there must be a queue of outstanding
disk requests (otherwise there 1s nothing to reorder)

e an on-line approach is required: new I/O requests may arrive at any time

CS350 Operating Systems Spring 2017



I/O0 15

FCFS Disk Head Scheduling

e handle requests in the order in which they arrive

e fair and simple, but no optimization of seek times

arrival order: 104 183 14 65 70

CS350 Operating Systems Spring 2017



I/O0 16

Shortest Seek Time First (SSTF)

e choose closest request (a greedy approach)

e seek times are reduced, but requests may starve

arrival order: 104 183 14 65 70

CS350 Operating Systems Spring 2017



I/O0 17

Elevator Algorithms (SCAN)
e Under SCAN, aka the elevator algorithm, the disk head moves in one direction
until there are no more requests in front of it, then reverses direction.
e there are many variations on this idea

e SCAN reduces seek times (relative to FCES), while avoiding starvation

CS350 Operating Systems Spring 2017



I/O0 18

SCAN Example

arrival order: 104 183 14 65 70

CS350 Operating Systems Spring 2017



I/O0 19

Data Transfer To/From Devices

e Option 1: program-controlled 1I/0
The device driver moves the data between memory and a buffer on the device.

— Simple, but the CPU i1s busy while the data is being transferred.

e Option 2: direct memory access (DMA)

— The device itself is responsible for moving data to/from memory. CPU is not

busy during this data transfer, and 1s free to do something else.

Sys/161 disks do program-controlled 1/0.

CS350 Operating Systems Spring 2017



I/O0

20

Device Register Example: Sys/161 disk controller

Offset | Size Type Description

0 4 status number of sectors

4 4 status and command | status

8 4 command sector number

12 4 status rotational speed (RPM)
32768 | 512 data transfer buffer

CS350

Operating Systems

Spring 2017



I/O0 21

Writing to a Sys/161 Disk

Device Driver Write Handler:

// only one disk request at a time

P (disk semaphore)

copy data from memory to device transfer buffer

write target sector number to disk sector number register
write ‘‘write’’ command to disk status register

// wait for request to complete

P (disk completion semaphore)

V (disk semaphore)

Interrupt Handler for Disk Device

// make the device ready again
write disk status register to ack completion

V(disk completion semaphore)

CS350 Operating Systems Spring 2017



I/O0 22

Reading From a Sys/161 Disk

Device Driver Read Handler:

// only one disk request at a time

P (disk semaphore)

write target sector number to disk sector number register
write Y‘read’’ command to disk status register

// wait for request to complete

P (disk completion semaphore)

copy data from device transfer buffer to memory

V (disk semaphore)

Interrupt Handler for Disk Device

// make the device ready again
write disk status register to ack completion

V(disk completion semaphore)

CS350 Operating Systems Spring 2017



I/O0 23

Direct Memory Access (DMA)

e DMA is used for block data transfers between devices (e.g., a disk) and memory

e Under DMA, the CPU initiates the data transfer and 1s notified when the transfer
1s finished. However, the device (not the CPU) controls the transfer itself.

memory

1. CPU issues DMA request to device
2. device directs data transfer

3. device interrupts CPU on completion

CS350 Operating Systems Spring 2017



I/O0 24

Solid State Drives(SSD)

e no mechanical parts; use integrated circuits for persistant storage instead of
magnetic surfaces
e DRAM: requires constant power to keep values
— transistors with capacitors
— capacitor holds microsecond charge; periodically refreshed by primary
power
e Flash Memory: traps electrons in quantum cage
— floating gate transistors

— usually NAND (not-and gates)

CS350 Operating Systems Spring 2017



I/O0 25

SSD Data Arrangement

e logically divided into blocks and pages
— 2,4 or 8KB pages
— 32KB-4MB blocks

e reads/writes at page level

— pages are initialized to 1s; can transition 1 — 0 at page level (i.e., write new
page)
— a high voltage is required to switch 0 — 1 (i.e., overwrite/delete page)

— cannot apply high voltage at page level, only to blocks

* overwriting/deleting data must be done at the block level

CS350 Operating Systems Spring 2017



I/O0 26

Writing and Deleting from Flash Memory

e Naive Solution (slow):
— read whole block into memory
— re-initialize block (all page bits back to 1s)

— update block in memory; write back to SSD

e SSD controller handles requests (faster):
— mark page to be deleted/overwritten as invalid
— write to an unused page
— update translation table

— requires garbage collection

CS350 Operating Systems Spring 2017



I/O0 27

Wear Leveling

e SSDs are not impervious

e blocks have limited number of write cycles
— 1f block 1s no longer writeable; 1t becomes ready-only

— when a certain % of blocks are read-only; disk becomes read-only

e SSD controller wear-levels; ensuring that write cycles are evenly spread across
all blocks

CS350 Operating Systems Spring 2017



I/O0 28

Defragmentation

e defragmentation takes files spread across multiple, non-sequential pages and
makes them sequential

— 1t re-writes many pages of memory, possibly several times

— SSD random and sequential access have approximately the same cost
* no clear advantage to defragmenting

% extra, unnecessary writes performed by defragmenting—causes
pre-mature disk aging

CS350 Operating Systems Spring 2017



