
Scheduling 1

CPU Scheduling

key concepts

round robin, shortest job first, MLFQ, multi-core scheduling, cache affinity, load

balancing

reading

Three Easy Pieces: Chapter 7 (CPU Scheduling), Chapter 8 (Multi-level Feedback),

Chapter 10 (Multi-CPU Scheduling)

CS350 Operating Systems Spring 2017



Scheduling 2

Simple Scheduling Model

• We are given a set of jobs to schedule.

• Only one job can run at a time.

• For each job, we are given

– job arrival time (ai)

– job run time (ri)

• For each job, we define

– response time: time between the job’s arrival and when the job starts to run

– turnaround time: time between the job’s arrival and when the job finishes

running.

• We must decide when each job should run, to achieve some goal, e.g., minimize

average turnaround time, or minimize average response time.

CS350 Operating Systems Spring 2017



Scheduling 3

Basic Non-Preemptive Schedulers: FCFS and SJF

• FCFS: runs jobs in arrival time order.

– simple, avoids starvation

– pre-emptive variant: round-robin

• SJF: shortest job first - run jobs in increasing order of ri

– minimizes average turnaround time

– long jobs may starve

– pre-emptive variant: SRTF (shortest remaining time first)

CS350 Operating Systems Spring 2017



Scheduling 4

FCFS Gantt Chart Example

time

J4

J2

J1

0 4 8 12 16 20

J3

Job J1 J2 J3 J4

arrival (ai) 0 0 0 5

run time (ri) 5 8 3 2

CS350 Operating Systems Spring 2017



Scheduling 5

SJF Example

time

J4

J3

J2

J1

0 4 8 12 16 20

Job J1 J2 J3 J4

arrival (ai) 0 0 0 5

run time (ri) 5 8 3 2

CS350 Operating Systems Spring 2017



Scheduling 6

Round Robin Example

time

J4

J3

J2

J1

0 4 8 12 16 20

Job J1 J2 J3 J4

arrival (ai) 0 0 0 5

run time (ri) 5 8 3 2

CS350 Operating Systems Spring 2017



Scheduling 7

SRTF Example

time

J4

J3

J2

J1

0 4 8 12 16 20

Job J1 J2 J3 J4

arrival (ai) 0 0 0 5

run time (ri) 5 8 3 2

CS350 Operating Systems Spring 2017



Scheduling 8

CPU Scheduling

• In CPU scheduling, the “jobs” to be scheduled are the threads.

• CPU scheduling typically differs from the simple scheduling model:

– the run times of threads are normally not known

– threads are sometimes not runnable: when they are blocked

– threads may have different priorities

• The objective of the scheduler is normally to achieve a balance between

– responsiveness (ensure that threads get to run regularly),

– fairness,

– efficiency

CS350 Operating Systems Spring 2017



Scheduling 9

Multi-level Feedback Queues

• objective: good responsiveness for interactive threads, non-interactive threads

make as much progress as possible

– key idea: interactive threads are frequently blocked

• approach: given higher priority to interactive threads, so that they run whenever

they are ready.

• problem: how to determine which threads are interactive and which are not?

CS350 Operating Systems Spring 2017



Scheduling 10

Multi-level Feedback Queues (Algorithm)

• scheduler maintains n round-robin ready queues (Q1 . . .Qn)

• scheduler always chooses a thread from Qn, unless it is empty

– if Qn is empty, choose a thread from Qn−1, unless it is empty too

– and so on, choosing a thread from Q1 only if all other queues are empty.

• threads in queue Qi use quantum qi

– typically larger quanta for lower-priority threads (qi ≥ qi+1)

• if the running thread from Qi uses its entire quantum and gets preempted,

demote it to queue Qi−1

• if a thread blocks, put it into Qn when it wakes up

• to prevent starvation, periodically move all threads to Qn

CS350 Operating Systems Spring 2017



Scheduling 11

3 Level Feedback Queue State Diagram

blocked

ready (Q3)

ready (Q2)

ready (Q1)

run

run

run

sleepwake up

run

run

run

preempt

preempt

preempt

CS350 Operating Systems Spring 2017



Scheduling 12

Linux Completely Fair Scheduler (CFS) - Main Ideas

• each thread can be assigned a weight

• the goal of the scheduler is to ensure that each thread gets a “share” of the

processor in proportion to its weight

• basic operation

– track the “virtual” runtime of each runnable thread

– always run the thread with the lowest virtual runtime

• virtual runtime is actual runtime adjusted by the thread weights

– suppose wi is the weight of the ith thread

– actual runtime of ith thread is multiplied by

∑
j
wj

wi

– virtual runtime advances slowly for threads with high weights, quickly for

threads with low weights

CS350 Operating Systems Spring 2017



Scheduling 13

Scheduling on Multi-Core Processors

core

core

core

core

core

core

core

core

per core ready queue(s) vs. shared ready queue(s)

CS350 Operating Systems Spring 2017



Scheduling 14

Scalability and Cache Affinity

• Contention and Scalability

– access to shared ready queue is a critical section, mutual exclusion needed

– as number of cores grows, contention for ready queue becomes a problem

– per core design scales to a larger number of cores

• CPU cache affinity

– as thread runs, data it accesses is loaded into CPU cache(s)

– moving the thread to another core means data must be reloaded into that

core’s caches

– as thread runs, it acquires an affinity for one core because of the cached data

– per core design benefits from affinity by keeping threads on the same core

– shared queue design does not

CS350 Operating Systems Spring 2017



Scheduling 15

Load Balancing

• in per-core design, queues may have different lengths

• this results in load imbalance across the cores

– cores may be idle while others are busy

– threads on lightly loaded cores get more CPU time than threads on heavily

loaded cores

• not an issue in shared queue design

• per-core designs typically need some mechanism for thread migration to

address load imbalances

– migration means moving threads from heavily loaded cores to lightly loaded

cores

CS350 Operating Systems Spring 2017


