Scheduling 1

CPU Scheduling

key concepts

round robin, shortest job first, MLFQ, multi-core scheduling, cache affinity, load
balancing

reading
Three Easy Pieces: Chapter 7 (CPU Scheduling), Chapter 8 (Multi-level Feedback),
Chapter 10 (Multi-CPU Scheduling)

CS350 Operating Systems Spring 2017



Scheduling 2

Simple Scheduling Model

e We are given a set of jobs to schedule.
e Only one job can run at a time.

e For each job, we are given
— job arrival time (a;)

— job run time (7;)

e For each job, we define
— response time: time between the job’s arrival and when the job starts to run
— turnaround time: time between the job’s arrival and when the job finishes

running.

e We must decide when each job should run, to achieve some goal, e.g., minimize
average turnaround time, or minimize average response time.

CS350 Operating Systems Spring 2017



Scheduling 3

Basic Non-Preemptive Schedulers: FCFS and SJF

e FCFS: runs jobs in arrival time order.
— simple, avoids starvation

— pre-emptive variant: round-robin

e SJF: shortest job first - run jobs in increasing order of 7;
— minimizes average furnaround time
— long jobs may starve

— pre-emptive variant: SRTF (shortest remaining time first)

CS350 Operating Systems Spring 2017



Scheduling 4

FCFS Gantt Chart Example

Ji

— = time

Job J1 | J2 113 | J4

arrival (a;) O] 0] 0|5
runtime (r;) || S | 8 | 3 | 2

CS350 Operating Systems Spring 2017



Scheduling

Ji

J2

SJF Example

— = time

16

20

Job J1 | J2

J3

J4

arrival (a;) 0] O

run time (r;) || 5 | 8

CS350

Operating Systems

Spring 2017



Scheduling 6

Round Robin Example

Ji

2| - - —

— = time

Job J1 | J2 113 | J4

arrival (a;) O] 0] 0|5
runtime (r;) || S | 8 | 3 | 2

CS350 Operating Systems Spring 2017



Scheduling

Ji

J2

SRTF Example

— = time

16

20

Job J1 | J2

J3

J4

arrival (a;) 0] O

run time (r;) || 5 | 8

CS350

Operating Systems

Spring 2017



Scheduling 8

CPU Scheduling

e In CPU scheduling, the “jobs” to be scheduled are the threads.

e CPU scheduling typically differs from the simple scheduling model:
— the run times of threads are normally not known
— threads are sometimes not runnable: when they are blocked

— threads may have different priorities

e The objective of the scheduler is normally to achieve a balance between
— responsiveness (ensure that threads get to run regularly),
— fairness,

— efficiency

CS350 Operating Systems Spring 2017



Scheduling 9

Multi-level Feedback Queues

e objective: good responsiveness for interactive threads, non-interactive threads

make as much progress as possible

— key 1dea: interactive threads are frequently blocked

e approach: given higher priority to interactive threads, so that they run whenever

they are ready.

e problem: how to determine which threads are interactive and which are not?

CS350 Operating Systems Spring 2017



Scheduling 10

Multi-level Feedback Queues (Algorithm)

e scheduler maintains n round-robin ready queues (Q)1 ... Q)

e scheduler always chooses a thread from (),,, unless it is empty
— if (),, 1s empty, choose a thread from (),,_1, unless it is empty too

— and so on, choosing a thread from () only if all other queues are empty.

e threads in queue (); use quantum g;

— typically larger quanta for lower-priority threads (q; > ¢;+1)

e if the running thread from (); uses its entire quantum and gets preempted,

demote it to queue (Q;_1
e if a thread blocks, put it into (),, when it wakes up

e to prevent starvation, periodically move all threads to (),

CS350 Operating Systems Spring 2017



Scheduling 11

3 Level Feedback Queue State Diagram

CS350 Operating Systems Spring 2017



Scheduling 12

Linux Completely Fair Scheduler (CFS) - Main Ideas

e cach thread can be assigned a weight

e the goal of the scheduler 1s to ensure that each thread gets a “share” of the
processor in proportion to its weight
e basic operation
— track the “virtual” runtime of each runnable thread

— always run the thread with the lowest virtual runtime

e virtual runtime is actual runtime adjusted by the thread weights

— suppose w; 1s the weight of the ith thread

. W
j o
Wy

— actual runtime of zth thread 1s multiplied by

— virtual runtime advances slowly for threads with high weights, quickly for

threads with low weights

CS350 Operating Systems Spring 2017



Scheduling

13

Scheduling on Multi-Core Processors

=

core |=—

core |e—

core |=—

per core ready queue(s)

core

core

core

core

VS.

shared ready queue(s)

CS350

Operating Systems

Spring 2017



Scheduling 14

Scalability and Cache Affinity

e Contention and Scalability
— access to shared ready queue is a critical section, mutual exclusion needed
— as number of cores grows, contention for ready queue becomes a problem

— per core design scales to a larger number of cores

e CPU cache affinity
— as thread runs, data i1t accesses 1s loaded into CPU cache(s)

— moving the thread to another core means data must be reloaded into that
core’s caches

— as thread runs, it acquires an affinity for one core because of the cached data
— per core design benefits from affinity by keeping threads on the same core

— shared queue design does not

CS350 Operating Systems Spring 2017



Scheduling 15

Load Balancing

e 1n per-core design, queues may have different lengths

e this results in load imbalance across the cores
— cores may be idle while others are busy
— threads on lightly loaded cores get more CPU time than threads on heavily
loaded cores
e not an issue in shared queue design
e per-core designs typically need some mechanism for thread migration to
address load imbalances

— migration means moving threads from heavily loaded cores to lightly loaded
cores

CS350 Operating Systems Spring 2017



