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CPU Scheduling

key concepts

round robin, shortest job first, MLFQ, multi-core scheduling, cache affinity, load

balancing

reading

Three Easy Pieces: Chapter 7 (CPU Scheduling), Chapter 8 (Multi-level Feedback),

Chapter 10 (Multi-CPU Scheduling)
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Simple Scheduling Model

• We are given a set of jobs to schedule.

• Only one job can run at a time.

• For each job, we are given

– job arrival time (ai)

– job run time (ri)

• For each job, we define

– response time: time between the job’s arrival and when the job starts to run

– turnaround time: time between the job’s arrival and when the job finishes

running.

• We must decide when each job should run, to achieve some goal, e.g., minimize

average turnaround time, or minimize average response time.
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Basic Non-Preemptive Schedulers: FCFS and SJF

• FCFS: runs jobs in arrival time order.

– simple, avoids starvation

– pre-emptive variant: round-robin

• SJF: shortest job first - run jobs in increasing order of ri

– minimizes average turnaround time

– long jobs may starve

– pre-emptive variant: SRTF (shortest remaining time first)
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FCFS Gantt Chart Example
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SJF Example
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Round Robin Example

time

J4

J3

J2

J1

0 4 8 12 16 20

Job J1 J2 J3 J4

arrival (ai) 0 0 0 5

run time (ri) 5 8 3 2

CS350 Operating Systems Spring 2017



Scheduling 7

SRTF Example
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CPU Scheduling

• In CPU scheduling, the “jobs” to be scheduled are the threads.

• CPU scheduling typically differs from the simple scheduling model:

– the run times of threads are normally not known

– threads are sometimes not runnable: when they are blocked

– threads may have different priorities

• The objective of the scheduler is normally to achieve a balance between

– responsiveness (ensure that threads get to run regularly),

– fairness,

– efficiency
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Multi-level Feedback Queues

• objective: good responsiveness for interactive threads, non-interactive threads

make as much progress as possible

– key idea: interactive threads are frequently blocked

• approach: given higher priority to interactive threads, so that they run whenever

they are ready.

• problem: how to determine which threads are interactive and which are not?
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Multi-level Feedback Queues (Algorithm)

• scheduler maintains n round-robin ready queues (Q1 . . .Qn)

• scheduler always chooses a thread from Qn, unless it is empty

– if Qn is empty, choose a thread from Qn−1, unless it is empty too

– and so on, choosing a thread from Q1 only if all other queues are empty.

• threads in queue Qi use quantum qi

– typically larger quanta for lower-priority threads (qi ≥ qi+1)

• if the running thread from Qi uses its entire quantum and gets preempted,

demote it to queue Qi−1

• if a thread blocks, put it into Qn when it wakes up

• to prevent starvation, periodically move all threads to Qn
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3 Level Feedback Queue State Diagram
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Linux Completely Fair Scheduler (CFS) - Main Ideas

• each thread can be assigned a weight

• the goal of the scheduler is to ensure that each thread gets a “share” of the

processor in proportion to its weight

• basic operation

– track the “virtual” runtime of each runnable thread

– always run the thread with the lowest virtual runtime

• virtual runtime is actual runtime adjusted by the thread weights

– suppose wi is the weight of the ith thread

– actual runtime of ith thread is multiplied by

∑
j
wj

wi

– virtual runtime advances slowly for threads with high weights, quickly for

threads with low weights
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Scheduling on Multi-Core Processors
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per core ready queue(s) vs. shared ready queue(s)
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Scalability and Cache Affinity

• Contention and Scalability

– access to shared ready queue is a critical section, mutual exclusion needed

– as number of cores grows, contention for ready queue becomes a problem

– per core design scales to a larger number of cores

• CPU cache affinity

– as thread runs, data it accesses is loaded into CPU cache(s)

– moving the thread to another core means data must be reloaded into that

core’s caches

– as thread runs, it acquires an affinity for one core because of the cached data

– per core design benefits from affinity by keeping threads on the same core

– shared queue design does not
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Load Balancing

• in per-core design, queues may have different lengths

• this results in load imbalance across the cores

– cores may be idle while others are busy

– threads on lightly loaded cores get more CPU time than threads on heavily

loaded cores

• not an issue in shared queue design

• per-core designs typically need some mechanism for thread migration to

address load imbalances

– migration means moving threads from heavily loaded cores to lightly loaded

cores
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