
CS350 Operating Systems Spring 2022

A3 - Assignment Specification

1 Introduction
Assignment 3 is a OS161 kernel assignment only. It does not have a Linux userspace componenet. Therefore,
these specifications are less guided in comparison to Assignment 1 and Assignment 2.

We encourage you to:

• Start early. The instructions are detailed, but even debugging simple mistakes can be time consuming.
There are no slip days or extensions possible for Assignment 3.

• Compile often. By checking whether the code compiles after every programming prompt, explicitly
specified in the following sections, you will be able to pinpoint problems very quickly.

In this assignment, for the A3 - OS/161 kernel programming componenet, we will use two prompts.

Explore prompts: prompt you to think about operating system concepts for a better understanding of
the OS/161 kernel code.

Programming prompts: give you step by step implementation instructions for the requirements of as-
signment 3 Read these carefully!

The objective of Assignment 3 is to

Enable argument passing in runprogram : pass arguments to the first process by modifying the kernel’s
runprogram command to support argument passing.

Implement execv : a new system call, execv for process management in OS161.

Handle full TLB : currently OS161 throws a panic on a full TLB, you will update vm_fault to handle a
full TLB.

Read-only Text Segment : OS161 does not load the text segment as read-only. You will change this
reduce vulnerability to bugs in user code.

Improve dumbvm :OS/161 has a very simple virtual memory system, called dumbvm. In this assignment, you
will replace dumbvm with an improved virtual memory system that relaxes a few of dumbvm’s limitations.
The dumbvm virtual memory system has two severe limitations in the way it manages physical mem-
ory.First, it assumes that each segment will be allocated contiguously in physical memory. Second, it
never re-uses physical memory. That is, when a process exits, the physical memory that was used to
hold that process’s address space does not become available for use by other processes. As a result,
the kernel quickly runs out of physical memory. This is why you could not run tests back to back in
assignments 1 and 2. The objective of this assignment is to remove both of these limitations.

• It should be possible for the pages in process’ address spaces to be placed into any free frame of
physical memory. That is, the kernel should no longer require that address space segments be
stored contiguously in physical memory.

• When a process terminates, the physical frames that were used to hold its pages should be freed,
and should become available for use by other processes.

Your implementation should correctly and gracefully handle error conditions, and properly return the
error codes as described on the man page. This is because application programs, including those used to test
your kernel for this assignment, depend on the behaviour of the system calls as specified in the man pages.
Under no circumstances should your kernel to crash.

Important: before you start working on this assignment, you should reconfigure and rebuild your
OS/161 kernel.

In the linux.student environment, this is done by:

1

https://student.cs.uwaterloo.ca/~cs350/common/os161-man/

cd kern/conf
./config ASST3
cd ../compile/ASST3
bmake depend
bmake
bmake install

All OS/161 kernel builds for this assignment should occur in the kern/compile/ASST3 directory in the
linux.student environment.

In the cs350-container, you can configure and build the kernel by:

build_kernel ASST3 //configure and build
cd /os-compile/
sys161 kernel-ASST3 //run the kernel

All code changes for this assignment should be enclosed in #if OPT_A3 statements. Don’t forget to add
#include "opt-A3.h" at the top of any file for which you make changes for this assignment.

2 Overview of Requirements
In the first part of this assignment, you will implement argument passing to the runprogram function. This
function implements process creation for commands passed to the kernel through the command line. The
function currently does not accept arguments, so commands of the form p <command>;q can only be passed
the name of an executable.

The second part includes implementing the execv. This system call is very similar in functionality to
runprogram, but uses an existing process to execute the new program. This difference makes it necessary
to clean up past process state and ensure we properly pass the arguments from the old to the new address
space.

The third part of the assignment includes expanding TLB functionality. Right now each process uses
each of the TLBs slots in succession and is unable to replace past entries with new ones.

Currently, the dumbvm system will panic and crash if the TLB fills up with valid entries. We will change
this so that the kernel will not panic.If kernel needs to add a new entry to the TLB and the TLB is full,
the kernel should simply overwrite one of the existing entries with the new entry. A simple way to do this
is to use the tlb_random function to allow the hardware to choose a random entry to be overwritten. The
vm_fault function is responsible for managing the TLB, so you should be able to implement this part of the
assignment with very small changes to that function.

Furthmore, in the dumbvm virtual memory system, all three address space segments (text, data, and stack)
are both readable and writable by the application. For this assignment, you should change this so that each
application’s text segment is read-only. Your kernel should set up TLB entries so that any attempt by an
application to modify its text section will cause the MIPS MMU to generate a read-only memory exception.
In this way, we can ensure that the process does not accidentally overwrite its own text segments.

Finally, the assignment includes building a simple physical page allocator. Currently, the kernel uses
a bump allocator to provide pages, without implementing any kind of freeing. The system runs out of
memory very quickly even when lightly loaded. We will implement a bitmap-based allocator that allows non
contiguous memory allocation and we will implement kfreepages to free pages allocated to processes so
that when a process terminates its pages are added back to the pool of available pages to be reused amongst
new processes.

3 Code Review
This section gives a brief overview of some parts of the kernel that are relevant for this assignment.

2

3.1 kern/syscall

This directory contains the files that are responsible for loading and running user-level programs, as well as
basic and stub implementations of a few system call handlers.

loadelf.c: This file contains the functions responsible for loading an ELF executable from the filesystem
into an address space. (ELF is the name of the executable format produced by cs350-gcc.)

proc_syscalls.c: This file is intended to hold the handlers for process-related system calls, including the
handler for execv, which you are implementing for this assignment.

runprogram.c: This file contains the implementation of the kernel’s runprogram command, which can be
invoked from the kernel menu. The runprogram command is used to launch the first process run by
the kernel. Typically, this process will be the ancestor of all other processes in the system. Studying
the runprogram function should give you some ideas on how to implement execv. Think about how
runprogram’s task is similar to execv’s, and how it is different.

3.2 kern/arch/mips/

This directory contains machine-specific code for basic kernel functions, such as handling system calls,
exceptions and interrupts, context switches, and virtual memory.

syscall/syscall.c: This file contains the system call dispatcher function, called syscall(). As was
described in Assignment 2a, you will need to modify this function to invoke your handler for execv().

locore/trap.c: In this file, in addition to the kernel exception handler, you will find the function enter_new_process,
which should be useful for your implementation of execv.

vm/dumbvm.c: This file contains the machine-specific part of OS/161’s very simple implementation of virtual
address spaces.

vm/ram.c: This file includes functions that the kernel uses to manage physical memory (RAM) while the
kernel is booting up, before the VM system has been initialized. Since your VM system will essentially
be taking over management of physical memory, you need to understand how these functions work.

include/tlb.h: This file defines the prototypes for the kernel’s functions for managing the TLB (such as
tlb write), as well as definitions of the fields in each TLB entry.

include/vm.h: This file defines some macros and constants (such as the page size) related to address trans-
lation on the MIPS. Note that this vm.h is different from the vm.h in kern/include.

3.3 kern/vm

The kern/vm directory contains the machine-independent part of the kernel’s virtual memory implementa-
tion.

copyinout.c: This file contains functions, such as copyin and copyout for moving data between kernel
space and user space.

kmalloc.c: This file contains implementations of kmalloc and kfree, to support dynamic memory allocation
for the kernel.

3.4 kern/include

vfs.h: This file describes the VFS interface, which the kernel uses to open and close files, e.g., program
executable files. See the runprogram function for an example of how to use the VFS interface.

3

vnode.h: Opening a file using the VFS interface results in a vnode object representing the open file. The
vnode object can be used to read data from and write data to the open file. vnode.h describes the
vnode interface. See loadelf.c for an example of code that uses vnode operations to read data from
a file.

uio.h: This file describes the uio interface. The kernel uses uio structures to describe a data transfer
between a file and memory, between memory and a file, or between two locations in memory. vnode
operations, such as VOP_READ, expect uio structures as parameters.

addrspace.h: Defines the addrspace interface. You may need to make changes here, at least to define an
appropriate addrspace structure.

vm.h: Some VM-related definitions, including prototypes for some key functions, such as vm fault (the TLB
miss handler) and alloc kpages (used, among other places, in kmalloc).

4 Adding argument passing to runprogram
The function runprogram in kern/syscall/runprogram.c is used to create new processes in the OS 161
kernel. We create new processes from the menu by entering commands.

4.1 The boot process
Before we look at runprogram, let’s see how we actually get to the shell prompt first. The kernel boot
process in OS 161 is very straightforward. Let us inspect it, by finding the main function:
root@os161:~/cs350-os161/os161-1.99# grep -r main \kern
kern/synchprobs/catmouse.c: * Values for these parameters are set by the main driver
kern/synchprobs/catmouse.c: * Once the main driver function (catmouse()) has created the cat and mouse
kern/synchprobs/catmouse.c: /* create the semaphore that is used to make the main thread
kern/synchprobs/catmouse.c: /* launch any remaining mice */
kern/synchprobs/traffic.c: * Values for these parameters are set by the main driver
kern/synchprobs/traffic.c: * Once the main driver function has created the
kern/include/vnode.h: * This maintains the open count so VOP_CLOSE can be
kern/include/uio.h: size_t uio_resid; /* Remaining amt of data to xfer */
kern/include/test.h:/* The main function, called from start.S. */
kern/include/test.h:void kmain(char *bootstring);

Note, that there is no main function, but there is a kmain. Let’s look for that:
root@os161:~/cs350-os161/os161-1.99# grep -r kmain \kern
kern/include/test.h:void kmain(char *bootstring);
kern/arch/sys161/startup/start.S: jal kmain
kern/arch/sys161/startup/start.S: * kmain shouldn't return. panic.
kern/arch/sys161/startup/start.S: .asciz "kmain returned\n"
kern/startup/main.c:kmain(char *arguments)

So the function is defined in kern/startup/main.c and used in kern/arch/sys161/startup/start.S,
which is an assembly file. This gives us strong hints that it holds the bootstrapping code. Inspecting the file
shows we are correct - in it we define the __start symbol, used to identify the main function of the final
binary. This will be set up by the system bootloader before this bootstrapping function is executed:

.set noreorder

.text

.globl __start

.type __start,@function

.ent __start
__start:

The bootstrapping code copies the following:

• copies the bootstring with any argument for the kernel into the initial CPU’s stack,

• copies the exception handling code to the physical addresses expected by the architecture.

• and initializes the TLB, sets up coprocessor 0 to specify that we are in kernel mode, and calls kmain.

4

If everything goes well, we never return. Note that since the startup code is in assembly, we are making
calls to C code using the jal instruction and adhering to the ABI.

We pass arguments through the bootstring, by specifying it in the command line. Commands are passed
from the host’s shell to the emulator’s kernel. If we do not enter q in the initial command string, then the
system directly reads our commands.

The kmain function calls boot, which sets up the kernel subsystem and menu. The menu function is
just a loop that executes first the commands in the bootstring, then any commands we pass to its terminal
afterwards.
void
menu(char *args)
{

char buf[64];

menu_execute(args, 1);

while (1) {
kprintf("OS/161 kernel [? for menu]: ");
kgets(buf, sizeof(buf));
menu_execute(buf, 0);

}
}

If we run the kernel with commands in the format p <program>; q. This causes menu_execute to run
first.
static
void
menu_execute(char *line, int isargs)
{

char *command;
char *context;
int result;

for (command = strtok_r(line, ";", &context);
command != NULL;
command = strtok_r(NULL, ";", &context)) {

if (isargs) {
kprintf("OS/161 kernel: %s\n", command);

}

result = cmd_dispatch(command);
if (result) {

kprintf("Menu command failed: %s\n", strerror(result));
if (isargs) {

panic("Failure processing kernel arguments\n");
}

}
}

}

The menu_execute function simply parses the bootstring into multiple command strings and calls
cmd_dispatch for each of them. The function in turn tokenizes each command and checks a dictionary
for the C function corresponding to the string. It passes all the arguments contained in the command string
to the command. This is why expanding runproram is easy; its caller is already passing it user arguments,
we just need to add code to handle them.
int
cmd_dispatch(char *cmd)
{

...
for (word = strtok_r(cmd, " \t", &context);

word != NULL;
word = strtok_r(NULL, " \t", &context))

...
for (i=0; cmdtable[i].name; i++) {

if (*cmdtable[i].name && !strcmp(args[0], cmdtable[i].name)) {
KASSERT(cmdtable[i].func!=NULL);

gettime(&beforesecs, &beforensecs);

result = cmdtable[i].func(nargs, args);
...

5

}
...

The command table is simply an array of <string,function> pairs. The code defines an anonymous struct
in C containing the pair, then an array of the struct’s instances called cmd_table:
static struct {

const char *name;
int (*func)(int nargs, char **args);

} cmdtable[] = {
/* menus */
{ "?", cmd_mainmenu },
...
/* operations */
{ "s", cmd_shell },
{ "p", cmd_prog },
...
{ "q", cmd_quit },
...

Here, we can find which in-kernel C functions correspond to all the commands we’ve been using throughout
the course. As we are implementing argument passing, we need to look into cmd_prog, which passes all
arguments to common_prog. In common_prog we are finally going from parsing to creating the new process:
static
int
common_prog(int nargs, char **args)
{

...

/* Create a process for the new program to run in. */
proc = proc_create_runprogram(args[0] /* name */);
if (proc == NULL) {

return ENOMEM;
}

result = thread_fork(args[0] /* thread name */,
proc /* new process */,
cmd_progthread /* thread function */,
args /* thread arg */, nargs /* thread arg */);

...
}

If you remember from Assignment 1, this is exactly the kind of work we do in sys_fork! The only
difference is that instead of passing a trampoline function to thread_fork, we are passing cmd_progthread.
That function is a wrapper for runprogram that copies over the function name into a local buffer then passes
the function name to the process.

Let’s now look at the function itself. We’ll go through it piece by piece. First, the function opens the file
of the executable passed to it. The goal is to dump the code into the address space of the new process so
that userspace can run it.
int
runprogram(char *progname)
{

...
/* Open the file. */
result = vfs_open(progname, O_RDONLY, 0, &v);
if (result) {

return result;
}
...

The next step is to actually create the address space. Remember that we are currently running as a
kernel thread created from the kernel, and do not have an associated address space. When we fork the new
kernel thread would run in the old process’ address space before it created its own. Since here the thread
was created directly by the kernel, there was no address space to inherit.

/* We should be a new process. */
KASSERT(curproc_getas() == NULL);

/* Create a new address space. */
as = as_create();
if (as ==NULL) {

6

vfs_close(v);
return ENOMEM;

}

/* Switch to it and activate it. */
curproc_setas(as);
as_activate();

Now that we have an address space, we can dump the ELF executable into it and close the file.
/* Load the executable. */
result = load_elf(v, &entrypoint);
if (result) {

/* p_addrspace will go away when curproc is destroyed */
vfs_close(v);
return result;

}

/* Done with the file now. */
vfs_close(v);

Having defined the code and data segments for the new process, we need only define the stack pointer. Af-
ter we do so we can jump to the new process, much like we do after fork. Instead of using ente_forked_process,
las we did in fork, we call enter_new_process and provide the address of main. The function will set up
the program counter and store the userspace addresses of the command line arguments to the right registers.

/* Define the user stack in the address space */
result = as_define_stack(as, &stackptr);
if (result) {

/* p_addrspace will go away when curproc is destroyed */
return result;

}

/* Warp to user mode. */
enter_new_process(0 /*argc*/, NULL /*userspace addr of argv*/,

stackptr, entrypoint);

4.2 Argument passing to runprogram

It is this last part of runprogram that we must extend to add argument passing functionality. Notice that
we are passing argc with value 0 and a null pointer for the argument vector argv to enter_new_process.
Note: we do not at any point actually copy the arguments out to the new process. The reason is that
runprogram does not have access to them.

First we need to actually have the arguments available in runprogram. Its caller, cmd_progthread, in
kern/startup/menu.c has a pointer to the arguments and the number of arguments. We only need to
change the call to runprogram to accept the number and array of arguments that are already avaialble in
cmd_progthread.

Programming: Modify the call to runprogram:

• to accept the number of arguments

• and the array of in-kernel arguments. Pass the program name as part of the argument array.

Hint: Its definition and declaration should accept the same arguments as a regular C main function. The
decalration of runprogram is in kern/include/test.h.

Now, that we have argc and argv available in runprogram, we must pass them to the process. We are
currently running in the kernel context, and the arguments are in the kernel’s part of the address space.
Both the arguments’ and the argv vector’s location have to be in userspace for the program to be able to
read them. To do that, we must copy the arguments out to the userspace part of the address space.

We cannot store the arguments in the heap; the userspace allocator would have no way of knowing we
did so.We can try instead putting the arguments in the stack segment. In that case, though, they will
be overwritten if enough data gets written to the stack if we put them in before the stack pointer . We
instead have to put them in memory that userspace would never attempt to use. The solution is to place the
arguments after the stack pointer, decrementing the latter to make room for the arguments. We essentially
use the stack segment as a bump allocator, with the stack pointer being the bump pointer. We make enough

7

room between the stack pointer and the end of userspace to fit all the command line arguments. Since
userspace will never increment the stack pointer beyond the initial value we pass to it, the arguments are
safe. As an example, suppose we want to pass the string ”abcd” to userspace. The initial stack pointer value
is 0x7ffff ffff. We decrement the pointer to fit the string, together with the trailing null \0, for a final
value of 0x7fff fffa. The address of the string in userspace is 0x7ffff fffa.

Programming: Implement a new function, called argcopy_out.

• the function should receive as arugments:

– the stack pointer by reference , and
– and a string to be copied out

• the function should:

– decrement the stack pointer to make room for the argument,
– make sure that the new address of stack pointer is 4 byte aligned, then
– use the copyoutstr function to copy the argument to the newly bump allocated space in userspace.

• The function should return the userspace address of the copied string.

Right now we are copying the string out, but we are not actually providing a way to userspace to find
these arguments in its address space. This is because we are copying out only the arguments themselves.
Instead, we need to create argv, the argument vector. This vector is a NULL terminated array of addresses,
where each entry points to one of the process’ command line arguments. Each call to argcopy_out provides
us with the address of the argument, so we can create argv in the kernel and copy it out to userspace.

Keep in mind that argv is an array of addresses, which are 32-bit for this architecture. MIPS thus
expects them to be aligned to a 4-byte boundary. In order to ensure this, round down the stack pointer to
a multiple of 4 before copying it out. Also make sure to end the array with a NULL pointer.

Programming: Use argcopy_out and the logic above to

• copy out arguments from kernel space to userspace and record the address of each argument in an
array, say argv_user.

• copy argv_user to stack

Make sure to allocate, fill in, copy out and free an argv_user array as described above.
We now have both the number of command line arguments in argc, and an array of pointers to the

arguments themselves in argv_user. We only need to pass them to enter_new_process.
Programming: Modify the call to enter_new_process to pass it argc and argv_user.
Programming: Modify kern/startup/menu.c to remove the warning ”Warning: argument passing from

menu not supported”
To test passing of arguments to the first process through runprogram, use testbin/add. The test

program adds the two numbers it is passed as arguments. It should produce output like this:

OS/161 kernel [? for menu]: p testbin/add 3 5
Answer: 8
Operation took 0.085253080 seconds

Make sure to test compile, build, install and test the progrmaming prompts in this section
before continuing with assignment 3. You kernel should not crash.

Explore: Use gdb to step through runprogram to thoroughly understand argument passing.

8

5 Implementing execv
Now that runprogram is working it is quite easy to implement the execv system call. The only change is
that we need to clean up past process state, and move the arguments from the old to the new address space.
Both additions are due to initiating execution from userspace instead of the kernel.

The call’s userspace signature is exec(char *progname, char **argv). You will note that sys_execv
is not currently implemented in the kernel, similar to sys_fork. We need to create it.

Programming: Add a stub function called sys_execv to kern/syscall/proc_syscalls.c and include
its declaration, where necessary.Hint: Make sure the signature is the same as above.

Since we just created the system call in the kernel, it is not called through the system call vector. We
need to add it, like we added the call to sys_fork in Assignment 1.

Programming: Add a case in the system call vector for sys_execv. Hint: where are the arguments?The
arguemnts are in regsiter a0 and a1?

The next part is quite easy: We just copy the code of runprogram straight into sys_execv! The calls
are nearly identical, except for the differences mentioned above. The first one is straightforward to resolve;
we must destroy the old address space before we attach a new address space to the process.

Programming: Call as_destroy on the old address space after activating the new address space.
The second difference between sys_execv and runprogram is that the command line arguments are in

the old address space, not in the kernel. We need to copy them over before we destroy the old address
space, and then copy them to the new adddress space using the exact same code as runprogram. To do this,
we must allocate enough space to copy them over. You should use the limits in limits.h, for maximum
number of arguments and maximum size of for each argument. We can create an array large enough to hold
arguments of any number and size within these limits, and deallocate it after we copy everything out.

Programming: Write an args_alloc function that dynamically allocates one array for each possible
argument, then returns a NULL allocated array, also dynamically allocated, with the addresses of the
former.

Programming: Write an args_free function that receives an array of buffers created with args_alloc,
frees each buffer in the array, then frees the array itself.

Programming: Write an argcopy_in function that accepts a dynamically allocated array of buffers,
sequentially copies in command line arguments from userspace using copyinstr, and returns the total
number of strings copied in. Recall, that the array in userspace is NULL terminated.

Programming: Use the args_ and argcopy_ functions in sys_execv for argument passing. Do not forget
to modify the call to enter_new_process to pass argc and argv to userspace.

We cannot test your execv implementation unless the system calls from Assignment 1 (fork, waitpid,
exit) are implemented and working properly. Therefore, there is little point in working on execv until the
Assignment 1 system calls are done.

To test your implementation of execv, we will try the following tests:

uw-testbin/hogparty

testbin/sty

uw-testbin/argtest

uw-testbin/argtesttest

The hogparty and sty tests are run using several different server configurations. The remaining tests,
which test argument passing, are run in just one server configuration.

The test program uw-testbin/hogparty should produce output like this:

OS/161 kernel: p uw-testbin/hogparty
xxxxx
zzzzyzy
yyy
Operation took 0.453588697 seconds
OS/161 kernel: q

9

Shutting down.
The system is halted.

Similarly, the test program argtest without any arguments should look like this:

OS/161 kernel [? for menu]: p uw-testbin/argtest
argc : 1
&tmp : 0x7fffffb0
&i : 0x7fffffb4
&argc : 0x7fffffc8
&argv : 0x7fffffcc
argv : 0x7fffffdc

&argv[0] : 0x7fffffdc
&argv[1] : 0x7fffffe0

argv[0] : 0x7fffffe8
argv[1] : 0x0

argv[0] -> uw-testbin/argtest
argv[1] -> [NULL]
Operation took 0.155976160 seconds

Similarly, the test program argtest with many arguments should look like this:

OS/161 kernel [? for menu]: p uw-testbin/argtest 456 howaboutthis string and another yet ag
argc : 8
&tmp : 0x7fffff68
&i : 0x7fffff6c
&argc : 0x7fffff80
&argv : 0x7fffff84
argv : 0x7fffff94

&argv[0] : 0x7fffff94
&argv[1] : 0x7fffff98
&argv[2] : 0x7fffff9c
&argv[3] : 0x7fffffa0
&argv[4] : 0x7fffffa4
&argv[5] : 0x7fffffa8
&argv[6] : 0x7fffffac
&argv[7] : 0x7fffffb0
&argv[8] : 0x7fffffb4

argv[0] : 0x7fffffe8
argv[1] : 0x7fffffe4
argv[2] : 0x7fffffd8
argv[3] : 0x7fffffd0
argv[4] : 0x7fffffcc
argv[5] : 0x7fffffc4
argv[6] : 0x7fffffc0
argv[7] : 0x7fffffbc
argv[8] : 0x0

argv[0] -> uw-testbin/argtest

10

argv[1] -> 456
argv[2] -> howaboutthis456
argv[3] -> string
argv[4] -> and
argv[5] -> another
argv[6] -> yet
argv[7] -> ag
argv[8] -> [NULL]
Operation took 0.293392080 seconds

Make sure to test your kernel with assignment 1 kernel tests. Do not move onto extend
dumbvm, until you have thoroughly tested your kernel with system calls, including execv and
argument passing.

6 Expanding TLB functionality
For the TLB we will add two kinds of functionality. First, we will handle TLB exhaustion due to the
program using too many pages at once. We will then turn all code or text segments into read-only to
prevent accidentally overwriting them.

For this functionality we need to change the code in kern/arch/mips/vm/dumbvm.c. Let’s see what the
page fault handling code in vm_fault currently does:
int
vm_fault(int faulttype, vaddr_t faultaddress)
{

...
switch (faulttype) {

case VM_FAULT_READONLY:
/* We always create pages read-write, so we can't get this */
panic("dumbvm: got VM_FAULT_READONLY\n");

case VM_FAULT_READ:
case VM_FAULT_WRITE:

break;
default:

return EINVAL;
}
...

During the fault we first check what kind of fault triggered the handler. Either it was a read/write fault
on a nonexistent entry, or the process tried to write to a read-only entry. The latter case leads to a panic,
while the former ones are handled.

...
if (faultaddress >= vbase1 && faultaddress < vtop1) {

paddr = (faultaddress - vbase1) + as->as_pbase1;
}
else if (faultaddress >= vbase2 && faultaddress < vtop2) {

paddr = (faultaddress - vbase2) + as->as_pbase2;
}
else if (faultaddress >= stackbase && faultaddress < stacktop) {

paddr = (faultaddress - stackbase) + as->as_stackpbase;
}
else {

return EFAULT;
}
...

The code then calculates the physical address of the fault from the virtual one. This calculation happens
because there is currently no page table implementation.
struct addrspace {

vaddr_t as_vbase1;
paddr_t as_pbase1;
size_t as_npages1;
vaddr_t as_vbase2;
paddr_t as_pbase2;

11

size_t as_npages2;
paddr_t as_stackpbase;

};

Each address space is composed of three contiguous segments, for text, data and stack. The segments are
preallocated, so we do not lazily allocate pages on faults like in mature operating systems. Moreover, since
we are using contiguous segments we only need to know what range a virtual address falls in, to find the
translation.

...
/* Disable interrupts on this CPU while frobbing the TLB. */
spl = splhigh();

for (i=0; i<NUM_TLB; i++) {
tlb_read(&ehi, &elo, i);
if (elo & TLBLO_VALID) {

continue;
}
ehi = faultaddress;
elo = paddr | TLBLO_DIRTY | TLBLO_VALID;
DEBUG(DB_VM, "dumbvm: 0x%x -> 0x%x\n", faultaddress, paddr);
tlb_write(ehi, elo, i);
splx(spl);
return 0;

}

kprintf("dumbvm: Ran out of TLB entries - cannot handle page fault\n");
splx(spl);
return EFAULT;
...

The final part of vm_fault constructs the new TLB entry and attempts to insert it into the TLB. The
new entry is composed of the ehi and elo variables. ehi holds the virtual address and elo holds the physical
address together with access bits. In OS/161 TLBLO_VALID means the page is readable, and TLBLO_DIRTY
means it is writable.

The code turns off interrupts, then reads TLB slots by one. When it finds a free one, it inserts the new
entry into this slot. If no TLB slots are available, an error is reported, ”dumbvm: Ran out of TLB entries -
cannot handle page fault” and results in the caller code killing the process and calling panic, crashing the
kernel.

6.1 Managing TLB exhaustion
We must change the code to overwrite a random slot if none are free, to avoid the kernel crash.

Programming: Modify the code, to remove the error message, and write the new ehi and elo values to
a random TLB slot using tlb_random.

6.2 Read-only text

Next, we implement read-only functionality. For this, we must check when inserting the TLB entry, whether
it is a code entry or not. If it is a code or text segment, then mark it as read-only. However, we must be able
to write to code pages when loading the ELF program into the address space. We saw that this happens in
runprogram and sys_execv. Therefore, we must track whether the ELF executable has been loaded before
marking code (text) pages as read-only in the TLB.

To do this we expand the addrspace structure with a boolean field as_loaded. The variable has a value
of 0 when the address space is created in as_create, and is set to 1, at the end of as_complete_load.

Programming: Add the as_loaded field to struct addrspace in kern/include/addrspace.h, properly
initializing it in as_create and setting it in as_complete_load in kern/arch/mips/vm/dumbvm.c.

If we look into runprogram and sys_execv, we see that they call load_elf, which eventually calls
as_complete_load. We should ensure this call invalidates the TLB, blowing away any read-write mappings
for the code region we created during loading. Any TLB misses incurred during actual execution will thus
never use stale read-write TLB entries for code. The code for invalidating the TLB entries is alreadyin
as_activate, so we just need to copy it over in as_complete_load.

Programming: Add TLB invalidation code to as_complete_load.

12

Next, we actually have to check for the field. When resolving the physical address in the handler we can
check whether it falls into the code segment. If it does, we do not set the dirty bit when creating the new
entry.

Programming: Modify the vm_fault so that when the faultaddress is in the text or code segment,
then check the as_loaded flag to make sure that load_elf has completed. If so mark the TLB entry read
only, otherwise it is read-write, with the dirty bit set, similar to the data and stack segments.

Finally, we must change the check at the beginning of the fault handler to exit gracefully instead of
calling panic. We cannot return to the caller, since returning a fault to it also causes a panic. We instead
directly call sys_exit with an error code in the event of a write fault on a read-only entry. The handler is
called from the offending process’ kernel context, so the sys_exit call destroys that process.

Programming: Modify the handler to call sys_exit with an EFAULT error on a write to a read only text
or code segment.

To test for correct implementation, you can try the followng:

• uw-testbin/vm-data1: This is a simple test of reading and writing to the data segment. Correct
output for this test should look as follows:

OS/161 kernel: p uw-testbin/vm-data1
SUCCEEDED
Operation took 0.796736057 seconds

• uw-testbin/vm-data3: This tests reading and writing to the data segment, and also reading from the
code segment. Correct output for this test should look as follows:

OS/161 kernel: p uw-testbin/vm-data3
SUCCEEDED
Operation took 1.336075017 seconds}

• uw-testbin/romemwrite This tests writing to the code segment, which the kernel is supposed to be
disallowing. The output should look like this:

OS/161 kernel: p uw-testbin/romemwrite
Trying to write to the text segment
This program should fail if the text segment is read-only.
However, the kernel should not crash...
Operation took 0.102239017 seconds
OS/161 kernel: q
Shutting down.

Note that the kernel has prompted for another command (q), which indicates that it has not crashed.

• uw-testbin/vm-crash2 This is similar to the previous test, but tests writing to read-only data. The
output should look like this:

OS/161 kernel: p uw-testbin/vm-crash2
Operation took 0.075943937 seconds
OS/161 kernel: q
Shutting down.

Make sure you have thoroughly tested your kernel before continuing.

13

7 Improving dumbvm
Finally, we improve dumbvm to implement physical frame allocator. To better understand the modifications
we have to do, let’s see the current implementation.
void
vm_bootstrap(void)
{

/* Do nothing. */
}

static
paddr_t
getppages(unsigned long npages)
{

paddr_t addr;

spinlock_acquire(&stealmem_lock);

addr = ram_stealmem(npages);

spinlock_release(&stealmem_lock);
return addr;

}

/* Allocate/free some kernel-space virtual pages */
vaddr_t
alloc_kpages(int npages)
{

paddr_t pa;
pa = getppages(npages);
if (pa==0) {

return 0;
}
return PADDR_TO_KVADDR(pa);

}

void
free_kpages(vaddr_t addr)
{

/* nothing - leak the memory. */

(void)addr;
}

void
as_destroy(struct addrspace *as)
{

kfree(as);
}

We see that right now there are multiple pieces missing:

• The vm_bootstrap call that supposedly sets up the allocator does nothing.

• The getppages call that backs alloc_kpages uses the boot time bump allocator through ram_stealmem.

• The free_kpages call does not do anything, since there is no allocator to free the pages back to.

• The as_destroy call does not free up the allocated process segments, it only frees the address space
struct itself.

7.1 Free up memory
We will begin with modifying the code to actually free up allocated process memory when the process is no
longer needed.
First we will create a putppages function that corresponds to getppages and frees physical pages. This
way, we can add the free pages back to the pool of available pages in the allocator.
The signature of the function will be void putppages(paddr_t paddr), so it will use physical pages
like getppages. The virtual address passed to free_kpages is kernel virutal. Therefore, we will cre-
ate in kern/arch/mips/include/vm.h a function KVADDR_TO_PADDR that does the opposite of the existing

14

PADDR_TO_KVADDR call. We will then use it in the function call to putpages from free_kpages.
We will also free the three segments of the address space during as_destroy by calling getppages on their
physical addresses.

Programming: Add a stub for putppages, change free_kpages and as_destroy to use it.

7.2 Allocate frames to process
Now that we are done with the scaffolding we can properly implement a bitmap allocator. We have three
tasks:

• bootstrap the allocator,

• change getppages to use the allocator, and

• implement putppages.

The allocator is an array of 32-bit integers. Each entry corresponds to a physical page. We use 32-bit
integers both for simplicity and to be able to hold enough information to make debugging easier. Using 32
bits is incredibly wasteful in terms of space usage (we could do with 2 bits per page), but it does not really
matter in our case.

We represent allocations by filling in the corresponding pages’ entries. We cannot just mark each pages
as allocated or free, because when freeing we only use the start address of the allocated region. We thus
need to be able to determine exactly which pages an allocation returned. This prevents us from accidentally
freeing pages that were allocated contiguously, by a differnt call to getppages.

An easy way to distinguish between allocations is to store the size of the allocation on the first page
returned. The entries of the other pages are filled with a poison value to make it trivial to test if we are
freeing a valid region. Suppose we do an allocation for page 0x10000, for example, and the allocation has
size 4. The allocator entry for 0x10000 has a value of 4, and those of 0x11000,0x12000 and 0x13000 are
filled with ALLOC_POISON, a poison value we define at the top of the file.

Now that we have determined how to represent allocations, we need to find a way to allocate the allocator’s
map. We will do this in vm_bootstrap, called in boot() after most of the rest of the kernel is set up. This
call overrides the boot time bump allocator and sets up the bitmap.

To implement the allocator we first call ram_getsize to find out the limits of our physical addresses.
Using those limits we know how large the allocator’s array has to be. We will use the beginning of the
available physical addresses to store the map. We thus need to translate the first available physical address
to kernel virtual using PADDR_TO_KVADDR. We can use the resulting pointer as a pointer to a global array of
integers called physmap.

Now that we have a map of all physical pages, we need only mark any pages already in use as inaccessible
using ALLOC_POISON. Such pages either got allocated during boot using ram_stealmem, or are in use by the
map itself. We know that all physical pages from 0 to the page of the first page reutnred by ram_getsize
are thus unavailable. We also know the starting address and size of the map, and thus know which pages to
reserve for it.

Programming: Implement vm_bootstrap by allocating space for physmap and initializing the map, as
described above.

We now have the map, and we have described how to implement allocation and freeing. One small issue
we have to take care of is making sure that getppages and putppages work at boot time. We thus add a
physmap_ready global variable that only gets set at the end of vm_bootstrap. If physmap_ready is not set,
getppages should use ram_stealmem as it currently does, and putppages should do nothing.

Programming: Add the logic described above to keep using the bump allocator before the bitmap allocator
is set up.

Finally, we implement the allocation and deallocation routines. The getppages call iterates through the
array until it finds a large enough contiguous array of pages. It then reserves them by writing the size of
the allocation to the entry of the first page, then poisons the rest. The putpages call reads the size of the
allocation, then frees the right number of pages.

Programming: Implement getppages and putppages. Hint: Make sure to use physical addresses. Use
the existing stealmem_lock spinlock to serialize calls to the allocator.

15

To test for correct implementation, you can try the followng:

• testbin/sort: This runs the sort test program six times in sequence. The machine is configured with
about 2MB of memory, and the sort program requires about 1.2MB to run. Each run of the sort
program should produce output like this:

OS/161 kernel: p testbin/sort
testbin/sort: Passed.
Operation took 4.804249320 seconds

If the program does not report Passed, or if the kernel crashes before prompting for the next command,
the run has failed.

• uw-testbin/hogparty: Run the hogparty test program five times in sequence (without quitting the
kernel). The machine is configured with about 1MB of memory. hogparty is about 55KB, and it
creates three hogs, each of which requires about 50KB, so that total size of the process tree is a bit
over 200KB. Unlike the widefork test, this one requires execv in addition to widefork.
Each run of the hogparty program should produce output like this:

OS/161 kernel: p uw-testbin/hogparty
yyyyyx
xxxx
zzzzz
Operation took 0.418434697 seconds

8 Submitting Your Work
To submit your work, you must use the cs350_submit program in the linux.student.cs computing envi-
ronment.

Important! You must use cs350_submit, not submit, to submit your work for CS350.

Note the usage for cs350_submit command is as follows

% usage: cs350_submit <assign_dir> <assign_num_type>

The assign_dir is the path to the root folder of the programming assignment. For the A3-kernel side
programming assignment, the assign_dir is the path to your os161-1.99 folder.

The assign_num_type for the kernel side is ASST3.
The argument assign_dir in the cs350_submit command, packages up your OS/161 kernel code or

userspace program, respectively, and submits it to the course account using the regular submit command.
This assignment only briefly summarizes what cs350_submit does.
You may submit multiple times. Each submission completely replaces any previous submissions that you

may have made for this assignment.

9 Checking Your Grade
You can run the following command from your Linux student environment:

cs350-grade <assign_num_type>

Where the assign_num_type is the same assign_num_type, you used when submitting your assignment.
For example, for checking your grades for CS350 A3 OS/161 kernel programming assignment, the command
and output should be similar to:

%cs350-grade ASST3

Also, note, there is no userspace programming assignment for assignment 3.

16

	Introduction
	Overview of Requirements
	Code Review
	kern/syscall
	kern/arch/mips/
	kern/vm
	kern/include

	Adding argument passing to runprogram
	The boot process
	Argument passing to runprogram

	Implementing execv
	Expanding TLB functionality
	Managing TLB exhaustion
	Read-only text

	Improving dumbvm
	Free up memory
	Allocate frames to process

	Submitting Your Work
	Checking Your Grade

