
Processes and the Kernel
key concepts: process,system call,processor

exception,fork/execv,multiprocessing

Zille Huma Kamal

David R. Cheriton School of Computer Science
University of Waterloo

Spring 2022

1 / 65

Recall: Sequential Program Execution

The Fetch/Execute Cycle

1 fetch instruction PC points to

2 decode and execute instruction

3 increment the PC

2 / 65

Process view of the world

A process is the execution of a program.

a process includes virtualized
resources :

virtual processor, for executing instructions
virtual memory, for an address space for the
program’s code and data
other resources, e.g., file and socket descriptors

processes are created and managed by
the kernel
processes are isolated from each other
but they can interact with each other:
interprocess communication

shared memory (e.g. mmap)
message passing (eg. pipe operator |)
sockets

3 / 65

Kernel’s view of a process

The kernel maintains a process control block (PCB) data
structure for each process.

a process includes virtualized
resources :

virtual processor, for executing instructions
virtual memory, for an address space for the
program’s code and data
other resources, e.g., file and socket descriptors

processes are created and managed by
the kernel
processes are isolated from each other
but they can interact with each other:
interprocess communication

shared memory (e.g. mmap)
message passing (eg. pipe operator |)
sockets

4 / 65

Process Management Calls

Processes can be created, managed, and destroyed. Each OS
supports a variety of functions to perform these tasks.

Linux OS/161

Creation fork,execv fork,execv

Destruction exit,kill exit

Synchronization wait,waitpid,pause,. . . waitpid

Attribute Mgmt getpid,getuid,nice,getrusage,. . . getpid

The OS/161 process management calls are NOT implemented yet.

5 / 65

fork, exit

int fork (void);

fork creates a new process (the child) that is a clone of the
original (the parent)
after fork, both parent and child are executing copies of the
same program
virtual memories of parent and child are identical at the time
of the fork, but may diverge afterwards
fork is called by the parent, but returns in both the parent
and the child
parent and child see different return values from fork

exit terminates the process that calls it

process can supply an exit status code when it exits
kernel records the exit status code in case another process asks
for it (via waitpid)

6 / 65

waitpid

int waitpid (int pid, int *stat, int opt);

pid – process to wait for, or -1 for any
stat – will contain exit value, or signal
opt – usually 0 or WNOHANG
Returns process ID or -1 on error
waitpid lets a process wait for another to terminate, and
retrieve its exit status code

7 / 65

The fork, exit, getpid and waitpid system call - example

main() {

rc = fork(); /* returns 0 to child, pid to parent */

if (rc == 0) { /* child executes this code */

my_pid = getpid();

x = child_code();

_exit(x);

} else { /* parent executes this code */

child_pid = rc;

parent_pid = getpid();

parent_code();

p = waitpid(child_pid,&child_exit,0);

if (WIFEXITED(child_exit))

printf("child exit status was %d\n",

WEXITSTATUS(child_exit))

}

}

8 / 65

The execv system call - run a process

In Linux, execv has many variants:

int execve (char *prog, char **argv, char **envp)

envp – environment variables, e.g., PATH, HOME

int execvp (char *prog, char **argv);

Search PATH for prog, use current environment

int execlp (char *prog, char *arg, ...);

List arguments one at a time, finish with NULL

prog – full pathname of program to run

argv – argument vector that gets passed to main

envp – environment variables, e.g.,

9 / 65

The execv system call - run a process (continued)

Generally called through wrapper functions

execv changes the program that a process is running

The calling process’s current virtual memory is destroyed

The process gets a new virtual memory, initialized with the
code and data of the new program to run

After execv, the new program starts executing

The process ID stays the same.

execv can pass arguments to the new program, if required

10 / 65

execv example

int main()

{

int rc = 0;

char *args[4];

args[0] = (char *) "/testbin/argtest";

args[1] = (char *) "first";

args[2] = (char *) "second";

args[3] = 0;

rc = execv("/testbin/argtest", args);

printf("If you see this execv failed\n");

printf("rc = %d errno = %d\n", rc, errno);

exit(0);

}

11 / 65

Combining fork and execv - an example

main()

{

char *args[4];

/* set args here */

rc = fork(); /* returns 0 to child, pid to parent */

if (rc == 0) {

status = execv("/testbin/argtest",args);

printf("If you see this execv failed\n");

printf("status = %d errno = %d\n", status, errno);

exit(0);

} else {

child_pid = rc;

parent_code();

p = waitpid(child_pid,&child_exit,0);

}

}

12 / 65

Putting it all together - a simplified shell (minish.c)

13 / 65

Inter-Process Communication (IPC)

Processes are isolated from each other. But, what if they want to
communicate (share data) with each other?
IPC or inter-process communication is a family of methods used to
send data between processes.

File: data to be shared is written to a file, accessed by both
processes

Socket: data is sent via network interface between processes

Pipe: data is sent, unidirectionally, from one process to
another via OS-managed data buffer

Shared Memory: data is sent via block of shared memory
visible to both processes

Message Passing/Queue: a queue/data stream provided by
the OS to send data between processes

14 / 65

Interprocess communication - e.g. pipe operator |

Interprocess

Manipulating file descriptors

int dup2 (int oldfd, int newfd);

Closes newfd, if it was a valid descriptor
Makes newfd an exact copy of oldfd
Two file descriptors will share same offset

Example: redirsh.c

Loop that reads a command and executes it
Recognizes input, output redirection

15 / 65

Example - redirsh.c

16 / 65

Deleting Processes

void exit (int status);

Current process ceases to exist
status shows up in waitpid (shifted)
By convention, status of 0 is success, non-zero error

int kill (int pid, int sig);

Sends signal sig to process pid

SIGTERM (sig=15) most common value, kills process by
default (but application can catch it for “cleanup”)
SIGKILL (sig=9) stronger, always kills a process,
e.g. from the shell kill -9 pid

17 / 65

System Calls

Process management calls, e.g., fork, are called by user programs.
They are also system calls. System calls are the interface
between processes and the kernel.

Service OS/161 Examples
create,destroy,manage processes fork,execv,waitpid,getpid

create,destroy,read,write files open,close,remove,read,write

manage file system and directories mkdir,rmdir,link,sync

interprocess communication pipe,read,write

manage virtual memory sbrk

query,manage system reboot, time

18 / 65

System Call Software Stack

19 / 65

Kernel Privilege

The CPU implements different levels (or rings) of execution
privilege as a security and isolation mechanism.

Kernel code runs at the highest privilege level.

Application code runs at a lower privilege level because user
programs should not be permitted to perform certain tasks such
as:

modifying the page tables that the kernel uses to implement
process virtual memories (address spaces)
halting the CPU

Programs cannot execute code or instructions belonging to a
higher-level of privilege. These restrictions allow the kernel to keep
processes isolated from one another - and from the kernel.

Application programs cannot directly call kernel functions or
access kernel data structures.

The Meltdown vulnerability found on Intel chips lets user applications
bypass execution privilege and access any address in physical memory.

20 / 65

How System Calls Work (Part 1)

Since application programs can’t directly call the
kernel, how does a program make a system call
such as fork?

There are only two things that make kernel code run:
1 Interrupts

interrupts are generated by devices when they need attention

2 Exceptions

exceptions are caused by instruction execution when a running
program needs attention

21 / 65

Recall: Interrupts

Interrupts are raised by devices (hardware)

An interrupt causes the hardware to transfer control to a fixed
location in memory, where an interrupt handler is located

Interrupt handlers are part of the kernel

If an interrupt occurs while an application program is running,
control will jump from the application to the kernel’s interrupt
handler

When an interrupt occurs, the processor switches to privileged
execution mode when it transfers control to the interrupt
handler

This is how the kernel gets its execution privilege

22 / 65

Exceptions

Exceptions are conditions that occur during the execution of a
program instruction.

Examples: arithmetic overflows, illegal instructions, or page
faults (to be discussed later).

Exceptions are detected by the CPU during instruction
execution

The CPU handles exceptions like it handles interrupts:

control is transferred to a fixed location, where an exception
handler is located
the processor is switched to privileged execution mode

The exception handler is part of the kernel

23 / 65

MIPS Exception Types

EX_IRQ 0 /* Interrupt */
EX_MOD 1 /* TLB Modify (write to read-only page) */
EX_TLBL 2 /* TLB miss on load */
EX_TLBS 3 /* TLB miss on store */
EX_ADEL 4 /* Address error on load */
EX_ADES 5 /* Address error on store */
EX_IBE 6 /* Bus error on instruction fetch */
EX_DBE 7 /* Bus error on data load *or* store */
EX_SYS 8 /* Syscall */
EX_BP 9 /* Breakpoint */
EX_RI 10 /* Reserved (illegal) instruction */
EX_CPU 11 /* Coprocessor unusable */
EX_OVF 12 /* Arithmetic overflow */

On the MIPS, the same mechanism handles exceptions and inter-
rupts, and there is a single handler for both in the kernel. The
handler uses these codes to determine what triggered it to run.

24 / 65

How System Calls Work (Part 2)

To perform a system call, the application program needs to
cause an exception to make the kernel execute:

on the MIPS, EX SYS is the system call exception

To cause this exception on the MIPS, the application executes
a special purpose instruction: syscall

other processor instruction sets include similar instructions,
e.g., syscall on x86

The kernel’s exception handler checks the exception code (set
by the CPU when the exception is generated) to distinguish
system call exceptions from other types of exceptions.

25 / 65

Which System Call?

There is only one syscall exception. fork and getpid are
both system calls. How does the kernel know which system
call the application is requesting?

Answer: system call codes

the kernel defines a code for each system call it understands
the kernel expects the application to place a code in a
specified location before executing the syscall instruction

for OS/161 on the MIPS, the code goes in register v0

the kernel’s exception handler checks this code to determine
which system call has been requested
the codes and code location are part of the kernel ABI
(Application Binary Interface)

Example: loading a system call code

Example: li v0, 0 loads the system call code for fork into v0.

26 / 65

Some OS/161 System Call Codes

...

#define SYS_fork 0

#define SYS_vfork 1

#define SYS_execv 2

#define SYS__exit 3

#define SYS_waitpid 4

#define SYS_getpid 5

...

This comes from kern/include/kern/syscall.h. The files in
kern/include/kern define things (like system call codes) that must
be known by both the kernel and applications.

27 / 65

System Call Parameters

System calls take parameters and return values, like function
calls. How does this work, since system calls are really just
exceptions?

Answer: The application places parameter values in
kernel-specified locations before the syscall, and looks for
return values in kernel-specified locations after the exception
handler returns

The locations are part of the kernel ABI
Parameter and return value placement is handled by the
application system call library functions
On MIPS, parameters go in registers a0,a1,a2,a3

result success/fail code is in a3 on return
return value or error code is in v0 on return

28 / 65

System Call Software Stack (again)

System calls are expensive

Which is faster?
N separate print calls, or form-
ing a string of N numbers and a
single print.

1 application calls library
wrapper function for desired
system call

2 library function performs
syscall instruction

3 kernel exception handler
runs
(a) creates trap frame to save application program

state
(b) determines that this is a system call exception
(c) determines which system call is being requested
(d) does the work for the requested system call
(e) restores the application program state from the

trap frame
(f) returns from the exception

4 library wrapper function
finishes and returns from its
call

5 application continues
execution

29 / 65

User and Kernel Stacks

Every OS/161 process thread has two stacks, although it only
uses one at a time

User (Application) Stack: used while application code is
executing

this stack is located in the application’s virtual memory
it holds activation records for application functions
the kernel creates this stack when it sets up the virtual
address memory for the process

Kernel Stack: used while the thread is executing kernel code,
after an exception or interrupt

this stack is a kernel structure
in OS/161, the t stack field of the thread structure points
to this stack
this stack holds activation records for kernel functions
this stack also holds trap frames and switch frames
(because the kernel creates trap frames and switch frames)

30 / 65

Exception Handling in OS/161

first to run is careful assembly code that

saves the application stack pointer
switches the stack pointer to point to the thread’s kernel stack
carefully saves application state and the address of the
instruction that was interrupted in a trap frame on the
thread’s kernel stack
calls mips trap, passing a pointer to the trap frame as a
parameter

after mips trap is finished, the handler will

restore application state (including the application stack
pointer) from the trap frame on the thread’s kernel stack
jump back to the application instruction that was interrupted,
and switch back to unprivileged execution mode

see kern/arch/mips/locore/exception-mips1.S

31 / 65

mips trap

mips trap determines what type of exception this is by
looking at the exception code: interrupt? system call?
something else?

there is a separate handler in the kernel for each type of
exception:

interrupt? call mainbus interrupt

address translation exception? call vm fault (important for
later assignments!)
system call? call syscall (kernel function), passing it the trap
frame pointer
syscall is in kern/arch/mips/syscall/syscall.c

see kern/arch/mips/locore/trap.c

32 / 65

Tracing a system call

33 / 65

Tracing a system call

34 / 65

Tracing a system call

35 / 65

Multiprocessing

Multiprocessing (or multitasking) means having multiple
processes existing at the same time
All processes share the available hardware resources, with the
sharing coordinated by the operating system:

Each process’ virtual memory is implemented using some of
the available physical memory. The OS decides how much
memory each process gets.
Each process’ threads are scheduled onto the available CPUs
(or CPU cores) by the OS.
Processes share access to other resources (e.g., disks, network
devices, I/O devices) by making system calls. The OS controls
this sharing.

The OS ensures that processes are isolated from one another.
Interprocess communication should be possible, but only at
the explicit request of the processes involved.

Processes can have many threads, but must have at least one to
execute. OS/161 only supports a single thread per process.

36 / 65

Two-Process Example

Threads ”waiting in” the kernel are ready.

37 / 65

Example: System Calls (1/27)

38 / 65

Example: System Calls (2/27)

Proc A calls fork, a system call.

39 / 65

Example: System Calls (3/27)

fork is a system call library function. It puts the system call code
in register v0 and raises the exception.

40 / 65

Example: System Calls (4/27)

Exception is raised, the CPU executes common exception. The CPU
goes into privileged mode and interrupts are turned off. Switch from
user to kernel stack. Save trapframe.

41 / 65

Example: System Calls (5/27)

After saving the state common exception calls mips trap to deter-
mine what kind of exception was raised. For a system call, turn
interrupts back on.

42 / 65

Example: System Calls (6/27)

mips trap determines exception is a system call. Calls syscall, a
kernel function to dispatch the correct function.

43 / 65

Example: System Calls (7/27)

syscall, the system call dispatcher, calls the appropriate handler for
the system call code provided in v0. In this case, sys fork is called.

44 / 65

Example: System Calls (8/27)

The system call is finally executed by the kernel.

45 / 65

Example: System Calls (9/27)

A timer interrupt occurs.

46 / 65

Example: System Calls (10/27)

CPU executes common exception. Interrupts are turned off. Save
trapframe.

47 / 65

Example: System Calls (11/27)

mips trap determines which exception has been raised. In this case,
a timer interrupt.

48 / 65

Example: System Calls (12/27)

mainbus interrupt determines which device threw the interrupt,
then calls the appropriate handler.

49 / 65

Example: System Calls (13/27)

The device interrupt handler runs. Thread quantum has expired.

50 / 65

Example: System Calls (14/27)

Quantum expired. thread yield is called to perform context switch.

51 / 65

Example: System Calls (15/27)

thread yield calls thread switch.

52 / 65

Example: System Calls (16/27)

thread switch calls switchframe switch.

53 / 65

Example: System Calls (17/27)

State of current thread saved, context switch occurs.

54 / 65

Example: System Calls (18/27)

State of new thread restored, return to thread yield.

55 / 65

Example: System Calls (19/27)

thread yield returns to interrupt handler.

56 / 65

Example: System Calls (20/27)

The interrupt handler returns to mainbus interrupt.

57 / 65

Example: System Calls (21/27)

mainbus interrupt returns to mips trap.

58 / 65

Example: System Calls (22/27)

mips trap returns to common exception.

59 / 65

Example: System Calls (23/27)

Thread context is restored from trapframe. Switch from kernel to
user stacks. Switch to unprivileged mode. User code continues
execution.

60 / 65

Example: System Calls (24/27)

Suppose the timer interrupt did NOT occur.

61 / 65

Example: System Calls (25/27)

sys fork returns to syscall. syscall sets up the return value/error
code and result. It also increments the PC.

62 / 65

Example: System Calls (26/27)

syscall returns to mips trap.

63 / 65

Example: System Calls (27/27)

mips trap returns to common exception. The trapframe data is
restored. Switch from kernel to user stack. Switch to unprivileged
mode (rfe). User code continues execution.

64 / 65

Food for thought

System calls allow user-level processes to interact with the
kernel to perform privileged operations

Do we need to deliver events from kernel to user,
asynchronously?

How do you implement user-level exception handling?

Upcalls:

Unix: signals
Windows: asynchronous events

65 / 65

