Processes and the Kernel

process,system call,processor
exception,fork /execv,multiprocessing

Zille Huma Kamal

David R. Cheriton School of Computer Science
University of Waterloo

Spring 2022

1/65

Recall: Sequential Program Execution

address space

program

counter

CPU regqisters

The Fetch/Execute Cycle
fetch instruction PC points to
decode and execute instruction
increment the PC

SP

stack
pointer

2 /65

Process view of the world

A process is the execution of a program.

—MAX

Stack m a process includes virtualized
resources :
m virtual processor, for executing instructions
"""""""" m virtual memory, for an address space for the
I program’s code and data
m other resources, e.g., file and socket descriptors

m processes are created and managed by

| T ________ the kernel
Heap m processes are isolated from each other
but they can interact with each other:
interprocess communication

m shared memory (e.g. mmap)

m message passing (eg. pipe operator |)
Text [Code) m sockets

Address Space of Process

— MIN

3/65

Kernel's view of a process

The kernel maintains a process control block (PCB) data
structure for each process.

m a process includes virtualized

Process Related Memory Related | File resources
RID ?:t'“e"‘ EOlter: :"';t";sr‘e'c't";:v“ m virtual processor, for executing instructions

Data Working directory m virtual memory, for an address space for the

Stk Open fles program's code and data
State: Pointers:
Running Base and Bound m other resources, e.g., file and socket descriptors
Ready Page Table
Blocked
Context m processes are created and managed by
PC
P s the kernel
SRR m processes are isolated from each other
CUtmeused but they can interact with each other:
s interprocess communication
Group _ m shared memory (e.g. mmap)
Creation date and ime m message passing (eg. pipe operator |)

m sockets

4/65

Process Management Calls

Processes can be created, managed, and destroyed. Each OS
supports a variety of functions to perform these tasks.

Linux 0S/161
Creation fork,execv fork,execv
Destruction _exit, kil _exit
Synchronization wait,waitpid,pause,. . . waitpid
Attribute Mgmt || getpid,getuid,nice,getrusage,. .. getpid

The OS/161 process management calls are NOT implemented yet.

5 /65

fork, exit

m int fork (void);

m fork creates a new process (the child) that is a clone of the
original (the parent)

m after fork, both parent and child are executing copies of the
same program

m virtual memories of parent and child are identical at the time
of the fork, but may diverge afterwards

m fork is called by the parent, but returns in both the parent
and the child

m parent and child see different return values from fork

m _exit terminates the process that calls it

m process can supply an exit status code when it exits
m kernel records the exit status code in case another process asks
for it (via waitpid)

6 /65

waltpid

m int waitpid (int pid, int *stat, int opt);
m pid — process to wait for, or -1 for any
stat — will contain exit value, or signal
opt — usually 0 or WNOHANG
Returns process ID or -1 on error
waitpid lets a process wait for another to terminate, and
retrieve its exit status code

7 /65

The fork, _exit, getpid and waitpid system call - example

main() {
rc = fork(); /* returns O to child, pid to parent */
if (rc == 0) { /* child executes this code */
my_pid = getpid();
x = child_code();
_exit(x);
} else { /* parent executes this code */
child_pid = rc;
parent_pid = getpid();
parent_code() ;
p = waitpid(child_pid,&child_exit,0);
if (WIFEXITED(child_exit))
printf("child exit status was %d\n",
WEXITSTATUS(child_exit))

8 /65

The execv system call - run a process

In Linux, execv has many variants:

m int execve (char *prog, char **argv, char **envp)
envp — environment variables, e.g., PATH, HOME

m int execvp (char *prog, char *xxargv);
Search PATH for prog, use current environment

m int execlp (char *prog, char *arg, ...);
List arguments one at a time, finish with NULL

m prog — full pathname of program to run
m argv — argument vector that gets passed to main

m envp — environment variables, e.g.,

9/65

The execv system call - run a process (continued)

Generally called through wrapper functions
execv changes the program that a process is running
The calling process’s current virtual memory is destroyed

The process gets a new virtual memory, initialized with the
code and data of the new program to run

m After execv, the new program starts executing

The process ID stays the same.

execv can pass arguments to the new program, if required

10 / 65

execv example

int main()

{
int rc = 0;
char *args[4];

args[0] = (char *) "/testbin/argtest";
args[1] = (char *) "first";

args[2] = (char *) "second";

args[3] = 0;

rc = execv("/testbin/argtest", args);
printf ("If you see this execv failed\n");
printf("rc = %d errno = %d\n", rc, errno);
exit (0);

11 /65

Combining fork and execv - an example

main()
{
char *args[4];
/* set args here */
rc = fork(); /* returns O to child, pid to parent */
if (rc == 0) {
status = execv("/testbin/argtest",args);
printf ("If you see this execv failed\n");
printf("status = %d errno = %d\n", status, errno);
exit (0);
} else {
child_pid = rc;
parent_code() ;
p = waitpid(child_pid,&child_exit,0);

12 /65

Putting it all together - a simplified shell (minish.c)

Parent Process (PID 5) Child Process (PID 6)
1 pid_t pid; char **av; pid_t pid; char **av;
2 void doexec() { void doexec() {
3 execvp(av[@], av); execvp(av[@], av);
4 perror(av[e]); perror(av[e]);
5 exit(1); exit(1);
6 } }
7
8 /* ... main loop: */ /* ... main loop: */
9 for (53) | for (55) {
10 parse_input(&av, stdin); parse_input(&av, stdin);
11 switch (pid = fork()) { switch (pid = fork()) {
12 case -1: case -1:
13 perror("fork"); break; perror("fork"); break;
14 case @: case @: // <« [PID=6] After Fork
15 doexec(); doexec();
16 default: // « After Fork (pid =5) default:
17 waitpid(pid, NULL, ©); break; waitpid(pid, NULL, @); break;
18 } ¥
19 } }

13/ 65

Inter-Process Communication (IPC)

Processes are isolated from each other. But, what if they want to
communicate (share data) with each other?

IPC or inter-process communication is a family of methods used to
send data between processes.

m File: data to be shared is written to a file, accessed by both
processes

m Socket: data is sent via network interface between processes

m Pipe: data is sent, unidirectionally, from one process to
another via OS-managed data buffer

m Shared Memory: data is sent via block of shared memory
visible to both processes

m Message Passing/Queue: a queue/data stream provided by
the OS to send data between processes

14 /65

Interprocess communication - e.g. pipe operator

Interprocess

m Manipulating file descriptors
m int dup2 (int oldfd, int newfd);

m Closes newfd, if it was a valid descriptor
m Makes newfd an exact copy of oldfd
m Two file descriptors will share same offset

m Example: redirsh.c

m Loop that reads a command and executes it
m Recognizes input, output redirection

15 / 65

Example - redirsh.c

1 void doexec (void) {

2 int fd;

3 if (infile) { /* non-NULL for "command < infile" */
4 if ((fd = open(infile, O _RDONLY)) < @) {

5 perror(infile);

6 exit(1);

7 }

8 if (fd '=0) {

9 dup2(fd, ©);

10 close(fd);

11 }

12 }

13

14 /¥ ... do same for outfile—fd 1, errfile—fd 2 ... */

15 execvp (av[@], av);
16 perror (av[e]);
17 exit (1);

16 / 65

Deleting Processes

m void exit (int status);

m Current process ceases to exist
m status shows up in waitpid (shifted)
m By convention, status of 0 is success, non-zero error

m int kill (int pid, int sig);
m Sends signal sig to process pid
m SIGTERM (sig=15) most common value, kills process by
default (but application can catch it for “cleanup”)
m SIGKILL (sig=9) stronger, always kills a process,
e.g. from the shell kill -9 pid

17 / 65

System Calls

Process management calls, e.g., fork, are called by user programs.
They are also system calls. System calls are the interface
between processes and the kernel.

Service 0S/161 Examples
create,destroy,manage processes fork,execv,waitpid,getpid
create,destroy,read,write files open,close,remove,read,write
manage file system and directories | mkdir,rmdir,link,sync
interprocess communication pipe,read,write
manage virtual memory sbrk
query,manage system reboot,__time

18 / 65

System Call Software Stack

application

system call library unprivileged
code

privileged
kernel code

19 / 65

Kernel Privilege

m The CPU implements different levels (or rings) of execution
privilege as a security and isolation mechanism.

m Kernel code runs at the highest privilege level.

m Application code runs at a lower privilege level because user

programs should not be permitted to perform certain tasks such
as:

m modifying the page tables that the kernel uses to implement
process virtual memories (address spaces)
m halting the CPU

m Programs cannot execute code or instructions belonging to a
higher-level of privilege. These restrictions allow the kernel to keep
processes isolated from one another - and from the kernel.

m Application programs cannot directly call kernel functions or
access kernel data structures.

The Meltdown vulnerability found on Intel chips lets user applications
bypass execution privilege and access any address in physical memory.

20 /65

How System Calls Work (Part 1)

Since application programs can't directly call the
kernel, how does a program make a system call
such as fork?

m There are only two things that make kernel code run:
Interrupts
B interrupts are generated by devices when they need attention
Exceptions

B exceptions are caused by instruction execution when a running
program needs attention

21 /65

Recall: Interrupts

m Interrupts are raised by devices (hardware)

m An interrupt causes the hardware to transfer control to a fixed
location in memory, where an interrupt handler is located

m Interrupt handlers are part of the kernel
m If an interrupt occurs while an application program is running,
control will jump from the application to the kernel’s interrupt
handler
m When an interrupt occurs, the processor switches to privileged
execution mode when it transfers control to the interrupt
handler

m This is how the kernel gets its execution privilege

22 /65

Exceptions

m Exceptions are conditions that occur during the execution of a

program instruction.

m Examples: arithmetic overflows, illegal instructions, or page

faults (to be discussed later).

m Exceptions are detected by the CPU during instruction

execution

m The CPU handles exceptions like it handles interrupts:

m control is transferred to a fixed location, where an exception

handler is located

m the processor is switched to privileged execution mode

m The exception handler is part of the kernel

23 /65

MIPS Exception Types

EX_IRQ 0 /* Interrupt */

EX_MOD 1 /* TLB Modify (write to read-only page) */
EX_TLBL 2 /* TLB miss on load */

EX_TLBS 3 /* TLB miss on store x*/

EX_ADEL 4 /* Address error on load */

EX_ADES 5 /* Address error on store */

EX_IBE 6 /* Bus error on instruction fetch */
EX_DBE 7 /* Bus error on data load *or* store */
EX_SYS 8 /* Syscall */

EX_BP 9 /* Breakpoint */

EX_RI 10 /* Reserved (illegal) instruction */
EX_CPU 11 /* Coprocessor unusable */

EX_OVF 12 /% Arithmetic overflow */

On the MIPS, the same mechanism handles exceptions and inter-

rupts, and there is a single handler for both in the kernel. The
handler uses these codes to determine what triggered it to run.

24 /65

How System Calls Work (Part 2)

m To perform a system call, the application program needs to
cause an exception to make the kernel execute:

m on the MIPS, EX_SYS is the system call exception

m To cause this exception on the MIPS, the application executes
a special purpose instruction: syscall

m other processor instruction sets include similar instructions,
e.g., syscall on x86

m The kernel’s exception handler checks the exception code (set
by the CPU when the exception is generated) to distinguish
system call exceptions from other types of exceptions.

25 / 65

Which System Call?

m There is only one syscall exception. fork and getpid are
both system calls. How does the kernel know which system
call the application is requesting?

m Answer: system call codes

m the kernel defines a code for each system call it understands
m the kernel expects the application to place a code in a
specified location before executing the syscall instruction

m for OS/161 on the MIPS, the code goes in register vO

m the kernel's exception handler checks this code to determine
which system call has been requested

m the codes and code location are part of the kernel ABI
(Application Binary Interface)

Example: loading a system call code

Example: 1i vO, O loads the system call code for fork into vO.

26 / 65

Some OS/161 System Call Codes

#define SYS_fork
#define SYS_vfork
#define SYS_execv
#define SYS__exit
#define SYS_waitpid
#define SYS_getpid

a s W N - O

This comes from kern/include/kern/syscall.h. The files in
kern/include/kern define things (like system call codes) that must
be known by both the kernel and applications.

27 / 65

System Call Parameters

m System calls take parameters and return values, like function
calls. How does this work, since system calls are really just
exceptions?

m Answer: The application places parameter values in
kernel-specified locations before the syscall, and looks for
return values in kernel-specified locations after the exception
handler returns

m [he locations are part of the kernel ABI

m Parameter and return value placement is handled by the
application system call library functions

m On MIPS, parameters go in registers a0,a1,a2,a3

m result success/fail code is in a3 on return
m return value or error code is in vO on return

28 / 65

System Call Software Stack (again)

application calls library
wrapper function for desired
system call

application library function performs
. syscall instruction
unprivileged

2 — 4 code kernel exception handler
runs

(a) creates trap frame to save application program
state

(b) determines that this is a system call exception
(c) determines which system call is being requested
System calls are expensive (d) does the work for the requested system call
(e) restores the application program state from the

Which is faster? trap frame

(f) returns from the exception
N separate print calls, or form- . :
ing a string of N numbers and a ||brary wrapper function

single print. finishes and returns from its
’ call

application continues
execution

system call library

privileged
3 kernel code

29 / 65

User and Kernel Stacks

m Every OS/161 process thread has two stacks, although it only
uses one at a time

m User (Application) Stack: used while application code is
executing

m this stack is located in the application’s virtual memory

m it holds activation records for application functions

m the kernel creates this stack when it sets up the virtual
address memory for the process

m Kernel Stack: used while the thread is executing kernel code,
after an exception or interrupt

m this stack is a kernel structure

m in OS/161, the t_stack field of the thread structure points
to this stack

m this stack holds activation records for kernel functions

m this stack also holds trap frames and switch frames
(because the kernel creates trap frames and switch frames)

30/ 65

Exception Handling in OS/161

m first to run is careful assembly code that

m saves the application stack pointer

m switches the stack pointer to point to the thread’s kernel stack

m carefully saves application state and the address of the
instruction that was interrupted in a trap frame on the
thread’s kernel stack

m calls mips_trap, passing a pointer to the trap frame as a
parameter

m after mips_trap is finished, the handler will

m restore application state (including the application stack
pointer) from the trap frame on the thread'’s kernel stack

m jump back to the application instruction that was interrupted,
and switch back to unprivileged execution mode

m see kern/arch/mips/locore/exception-mipsl.S

31/65

mips_trap

m mips_trap determines what type of exception this is by
looking at the exception code: interrupt? system call?
something else?

m there is a separate handler in the kernel for each type of
exception:

m interrupt? call mainbus_interrupt

m address translation exception? call vm_fault (important for
later assignments!)

m system call? call syscall (kernel function), passing it the trap
frame pointer

m syscall is in kern/arch/mips/syscall/syscall.c

m see kern/arch/mips/locore/trap.c

32 /65

Tracing a system call
_

1 /e See how function and system calls happens. #/
2 #include <unistd.h>
I #include <errno.he
4

5 int

6 main()

7 A

B int x;

9 x = close(999);
10 it (x e @) {

1 return errno;
12 b oelse {

13 roturn x;
4}

15}

Kernel Stack

code, data, stack
I

User

184 commn_gxception:
mfch kO, i status /e Get status reglster sf
aadi kb, W9, CST_RWp /o Check The we-wiri-in-user-sode BiT o/

code, data and stack
L
]

107
108
W e
10 * Allocate stack space for 37 words te hold the trap frase,
11 « plus four more words for a minisal argusent block, plus
s 12 « one more for proper (64-bit] stack aligneent,
2 13 "
= 14 agat sp, sp, =168
2 118
ne e
1z * Save geveval registers,
1ns o
18

18 :;:;
171 addiu 8, sp, 16 /= set argusent - pointer to the trapfrase wf / 6! -’

132 gal mips_trap fe call it

1

——

code, data, and stack
I

£ - 00400050 <mainn: exception_code=syscall &
o 7 t 2Tbaffes addiv sp,39,-24
a 8 afbrene ™ ra, 16(5p) ©0_status
5 9 ec1e0077 jal 4001de <closes KU= user 1, |E = enabled 1
® 24040307 1 0,99
o 0_epc

14 B04R01dc <closex:
a0d1d. ea3e
15 400

PC=4001dc
T3t i 1000c0 <_syscalls o
24020031 1 ve, 59

Kernel Stack

184 commen_except ion:
10% mfc® kB, c@_status /e« Get status register o/
—0 |18 andi ke, kB, CSTKMp /e Check fhe we-werd-in-user-sode BET +f

w8 se
119 = Allocate stack space for 57 words to hold the ©

code, data, and stack

1 * plus feur sore words for 3 minisal argusent
1z = one more for proper (B4-bit) stack alignsent
e 13 o
E 114 addi p, sp, =168
£ 118
3 115 I
ur = Save geveral registers.
18 .
1% .
18 .
121 addiu a8, sp, 16 /= set argument - pointer to the trapframe o/ 34 65
132 jal mips_trap /e call it e

Tracing a system call

Stack PC=0x80000080

return address: _start SP

G al=ptr to trapframe,

_____________ l"""_""" v0=49

cl_cause
exception_code=syscall B

c0_status
KU=kernel 0,IE=disabled O

User: code, dataand stack

o_epc
PC=4001dc

|

Trapframe

Kernel: code, data and stack

35 /65

Multiprocessing

m Multiprocessing (or multitasking) means having multiple
processes existing at the same time

m All processes share the available hardware resources, with the
sharing coordinated by the operating system:

m Each process’ virtual memory is implemented using some of
the available physical memory. The OS decides how much
memory each process gets.

m Each process’ threads are scheduled onto the available CPUs
(or CPU cores) by the OS.

m Processes share access to other resources (e.g., disks, network
devices, |/O devices) by making system calls. The OS controls
this sharing.

m The OS ensures that processes are isolated from one another.
Interprocess communication should be possible, but only at

the explicit request of the processes involved.

Processes can have many threads, but must have at least one to
execute. OS/161 only supports a single thread per process.

36 /65

Two-Process Example

process B
process A kernel ~ thread process B
process A __»E timer interrupt ¢
thread LISRRES RENRINNRRENRRRRERENRAER] NRRREY" : E _quantum has
:llllll AEEEEEEENEEENEEENEENEEER IIIIIIE ; notexpired
T quantumhas | | DL foontextswitch
expired : :
Context SWitch E II F
||||||||||||||||||||||||||||||||||| 1

Threads "waiting in"” the kernel are ready.

37 /65

Example: System Calls (1/27)

>

privileged mode

kernel

unprivileged mode

<

proc 1

proc 2

proc

3

38 /65

Example: System Calls (2/27)

SA
@]
e
©
9 kernel
2
=
a
Q
-8 lication fork()
applica
E ﬁ stack frames
]
g 7 S,
D o S
— [75]
= =
S
C
"y | procl proc 2

Proc A calls fork, a system call.

39 /65

Example: System Calls (3/27)

Q
xo¥ ¥
O
e
©
< kernel
Q
=
| —-—
o
Q
-8 licati lio, vO
application i0, v
e ﬁ stack frames syscall
go] 5]
8] o fork -8
Q Q (W)
— wvy
> -}
=
o
[
-}
v proc 1 proc 2

fork is a system call library function. It puts the system call code
in register vO and raises the exception.

40 / 65

Example: System Calls (4/27)

common_exception
application 0x8000 0080

stack frames

fork

user stack

=~
O
(1]
i
(Vs
K]
e
_
Q
=~

privileged mode

proc 2

code

Exception is raised, the CPU executes common_exception. The CPU
goes into privileged mode and interrupts are turned off. Switch from
user to kernel stack. Save trapframe.

41 /65

Example: System Calls (5/27)

mips_trap

application trapframe
stack frames

fork

user stack

kernel stack

privileged mode

proc 2

code

After saving the state common_exception calls mips_trap to deter-
mine what kind of exception was raised. For a system call, turn
interrupts back on.

42 / 65

Example: System Calls (6/27)

syscall

application

trapframe
stack frames

mips_trap

code

fork

user stack

e
&)
(18]
i
(%5
K,
=
—
)
=

privileged mode

proc 2

mips_trap determines exception is a system call. Calls syscall, a
kernel function to dispatch the correct function.

43/ 65

Example: System Calls (7/27)

sys_fork

application trapframe
stack frames

mips_trap

code

fork

user stack

syscall

kernel stack

privileged mode

proc 2

syscall, the system call dispatcher, calls the appropriate handler for
the system call code provided in vO. In this case, sys_fork is called.

44 / 65

Example: System Calls (8/27)

application trapframe

% stack frames ﬁ b QL

g s E

3 fork @ mips_trap S
CIJ O (]
_8 9 < syscall
£ i,
O sys_fork
v
(@]
Q
=
ol

proc 2
The system call is finally executed by the kernel.
45 / 65
Example: System Calls (9/27)
application

% stack frames U

g g
o 2 fork v
o B
o -
=
?,, timer A
= Interrupt
=
| -
o

proc 2

A timer interrupt occurs.

46 / 65

Example: System Calls (10/27)

common_exception

application 0x8000 0080

trapframe
stack frames

fork mips_trap

code

user stack

syscall

kernel stack

sys_fork

trapframe

privileged mode

proc 2

CPU executes common_exception. Interrupts are turned off. Save
trapframe.

47 /65

Example: System Calls (11/27)

mips_trap
application

trapframe
stack frames

mips_trap

code

fork

user stack

syscall

kernel stack

sys_fork

trapframe

privileged mode

proc 2

mips_trap determines which exception has been raised. In this case,
a timer interrupt.

48 / 65

Example: System Calls (12/27)

application

trapframe
stack frames

fork mips_trap

user stack

syscall

kernel stack

sys_fork

mainbus_interrupt

code

trapframe

privileged mode

mips_trap

proc 2

then calls the appropriate handler.

mainbus_interrupt determines which device threw the interrupt,

49 / 65

Example: System Calls (13/27)

application

trapframe
stack frames

fork mips_trap

user stack

syscall

kernel stack

sys_fork

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt handler

proc 2

code

The device interrupt handler runs. Thread quantum has expired.

50 / 65

Example: System Calls (14/27)

privileged mode

application
stack frames

fork

e
@)
18]
-
v
-
[
v
>

trapframe
mips_trap

syscall

i
9]
0
e
v
o
o
—
)
-

sys_fork

trapframe

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

proc 2

code

Quantum expired. thread_yield is called to perform context switch.

51 /65

Example: System Calls (15/27)

privileged mode

application
stack frames

fork

user stack

kernel stack

trapframe
mips_trap
syscall
sys_fork
trapframe

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

thread_switch

proc 2

code

thread_yield calls thread_switch.

52 /65

Example: System Calls (16/27)

application
stack frames

fork

user stack

kernel stack

trapframe

mips_trap

syscall

switchframe

code

sys_fork

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

proc 2

thread_yield

thread_switch

thread_switch calls switchframe_switch.

53 /65

Example: System Calls (17/27)

o application o g application v trapframe
(] stack frames (] (@] stack frames [=} -
[© (o] (0] mips_trap
3 v 3 4
o fork — — .
(] T] 7] [} mainbus
IS L O -
3 = interrupt
8 sys_fork handler
[@)] ’
E thread_switch
o mips_trap
switchframe
mainbus
interrupt
interrupt
handler context
thread_yield switch
vene o
s7ae2

State of current thread saved, context switch occurs.

54 / 65

Example: System Calls (18/27)

g application > g application e trapframe
U stack frames (W) U stack frames [w] N
T o] © © mips_trap
fork — —)
<]]]] r} mainbus
(] GJ
S - = interrupt
g sys_fork handler
(@]
Q thread_yield
>
— B
3
mainbus
interrupt
interrupt
handler
thread_yield
s |
proc 2
State of new thread restored, return to thread_yield.
g application > trapframe g application e trapframe
U stack frames (W) U stack frames [w] -
[© (] © mips_trap
i - mips_trap i k7S
o fork — - — .
]]] Fe} mainbus
= g syscall = % interrupt
-3 "4 interrupt
sys_fork handler

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

thread_switch

switchframe

proc 2

thread_yield returns to interrupt handler.

56 / 65

Example: System Calls (20/27)

application trapframe
stack frames

fork

mips_trap

user stack

syscall

kernel stack
user stack

sys_fork

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

thread_switch

application
stack frames

switchframe p roc 2

kernel stack

trapframe

mips_trap

mainbus
interrupt

The interrupt handler returns to mainbus_interrupt.

57 /65

Example: System Calls (21/27)

application trapframe
stack frames

fork mips_trap

user stack

—
V)
1]
-~
wv
fo.
Q
wv
S

syscall

kernel stack

sys_fork

application
stack frames

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

thread_switch

switchframe p roc 2

trapframe

mips_trap

kernel stack

mainbus_interrupt returns to mips_trap.

58 / 65

Example: System Calls (22/27)

application
stack frames

application trapframe
stack frames

trapframe

mips_trap

fork

user stack

kernel stack

syscall

user stack
kernel stack

sys_fork

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

thread_switch

switchframe p roc 2

mips_trap returns to common_exception.

59 / 65

Example: System Calls (23/27)

application
stack frames

application trapframe
stack frames

fork mips_trap

user stack

syscall

=
9]
(1]
+—
wv
.
(<9}
wv
=]

kernel stack
kernel stack

sys_fork

trapframe

privileged mode

mips_trap

mainbus
interrupt

interrupt
handler

thread_yield

thread_switch

switchframe p roc 2

Thread context is restored from trapframe. Switch from kernel to

user stacks. Switch to unprivileged mode. User code continues
execution.

60 / 65

Example: System Calls (24/27)

ke < - 2
: o I S
s B 2
1
£ R
:
Q
(@)}
Q
=
| .
o
proc 2
Suppose the timer interrupt did NOT occur.
Example: System Calls (25/27)
if (err) { /* error */
ieati tf->tf_vO=err;
application trapframe _ ;
s o] jelse{/*noerror*/ | O
7 v mips_trap tf->tf_v0 = retval; 8
b —
) Q tf->tf_a3=0;
%] c syscall }
v
/* advance PC*/

tf->tf_epc+=4;

privileged mode

proc 2

sys_fork returns to syscall. syscall sets up the return value/error
code and result. It also increments the PC.

62 /65

Example: System Calls (26/27)

application trapframe
3 S v
£ s e B
U
° P c
o} 3 =
o
Q
(@)
2
=
S
Q.
proc 2
syscall returns to mips_trap.
63/ 65
Example: System Calls (27/27)
common_exception
[0x8000 0080
e application o~
(W] stack frames @] <]
L] 0] ©
+— + 0
- | . u
(<] Q jrko
g- g i
)
-~

privileged mode

proc 2

mips_trap returns to common_exception. The trapframe data is
restored. Switch from kernel to user stack. Switch to unprivileged
mode (rfe). User code continues execution.

64 / 65

Food for thought

m System calls allow user-level processes to interact with the
kernel to perform privileged operations

m Do we need to deliver events from kernel to user,
asynchronously?

m How do you implement user-level exception handling?

m Upcalls:

m Unix: signals
m Windows: asynchronous events

65 / 65

