
Synchronization
key concepts: critical sections, mutual exclusion, test-and-set,
spinlocks, blocking and blocking locks, semaphores, condition

variables, deadlocks

Zille Huma Kamal

David R. Cheriton School of Computer Science
University of Waterloo

Spring 2022

1 / 58

Thread Synchronization

All threads in a concurrent program share access to the
program’s global variables and the heap.

The part of a concurrent program in which a shared object is
accessed is called a critical section.

What happens if several threads try to access the same global
variable or heap object at the same time?

2 / 58

Critical Section Example

/* Note the use of volatile; revisit later */

int ________volatile total = 0;

void add() { void sub() {
int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
total++; total--;

} }
} }

If one thread executes add and another executes sub what is the
value of total when they have finished?

3 / 58

Critical Section Example (assembly detail)

/* Note the use of volatile */

int ________volatile total = 0;

void add() { void sub() {
loadaddr R8 total loadaddr R10 total

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
lw R9 0(R8) lw R11 0(R10)

add R9 1 sub R11 1

sw R9 0(R8) sw R11 0(R10)

} }
} }

4 / 58

Critical Section Example (Trace 1)

Thread 1 Thread 2

loadaddr R8 total

lw R9 0(R8) R9=0

add R9 1 R9=1

sw R9 0(R8) total=1

<INTERRUPT>

loadaddr R10 total

lw R11 0(R10) R11=1

sub R11 1 R11=0

sw R11 0(R10) total=0

One possible order of execution. Final value of total is 0.

5 / 58

Critical Section Example (Trace 2)

Thread 1 Thread 2

loadaddr R8 total

lw R9 0(R8) R9=0

add R9 1 R9=1

<INTERRUPT and context switch>

loadaddr R10 total

lw R11 0(R10) R11=0

sub R11 1 R11=-1

sw R11 0(R10) total=-1

...

<INTERRUPT and context switch>

sw R9 0(R8) total=1

One possible order of execution. Final value of total is 1.

6 / 58

Critical Section Example (Trace 3)

Thread 1 Thread 2

loadaddr R8 total loadaddr R10 total

lw R9 0(R8) R9=0 lw R11 0(R10) R11=0

add R9 1 R9=1 sub R11 1 R11=-1

sw R9 0(R8) total=1

sw R11 0(R10) total=-1

Another possible order of execution, this time on two processors.
Final value of total is -1.

7 / 58

Race Condition

A race condition is when the program result depends on the
order of execution. Race conditions occur when multiple threads
are reading and writing the same memory at the same time.
Sources of race conditions:

1 implementation

Race conditions can occur for reasons other than and beyond
the programmers control, specifically:

1 compiler

2 CPU

In both cases, compiler and CPU introduce race conditions due to
optimizations

memory models describe how thread access shared memory

a memory model tells the compiler and CPU which
optimizations can be performed

8 / 58

Synchronization Techniques

Disable interrupts: used in exception handler, scheduler,
device drivers, etc

Hardware primitives: low level intructions are used to build
synchronization primitives

Language-level primitives: synchronization primitives can be
used to build libraries for supporting synchronization

the C11 standard has builtin support for atomics, enable in
GCC with the -std=c11 flag
builtin memory fence or barrier to force outstanding
operations to complete before continuing (e.g. read and write
to volatile varaibles)

9 / 58

Other Language and Instruction Level Instructions

many languages support multi-threading with memory models
and language-level synchronization functions (i.e., locks)

compiler is aware of critical sections via language-level
synchronization functions; does not perform optimizations
which cause race conditions
the version of C used by OS/161 does not support this

the CPU also has a memory model as it also re-orders loads
and stores to improve performance

modern architectures provide barrier or fence instructions to
disable and reenable these CPU-level optimizations to prevent
race conditions at this level
the MIPS R3000 CPU used in this course does not have these
instructions

Aims of Synchronization

Use relaxed memory models, so that sequential consistency
does not thwart optimizations.

Generally, avoid depending on memory model - use
synchronization primitives for mutual exclusion

10 / 58

Note on Volatile

note: in the slides, shared variables are declared volatile

it is faster to access values from a register, than from memory

compilers optimize for this; storing values in registers for as
long as possible
consider:
int sharedTotal = 0;

int FuncA() {
... code that uses sharedTotal ...

}
int FuncB() {

... code that uses sharedTotal ...

}

if the compiler optimizes sharedTotal into register R3 in
FuncA, and register R8 in FuncB, which register has the
correct value for sharedTotal?

volatile disables this optimization, forcing a value to be
loaded/stored to memory with each use, it also prevents the
compiler from re-ordering loads and stores for that variable

shared variables should be declared volatile in your code

11 / 58

Is there a race condition?

int list remove front(list *lp) {
int num;

list element *element;

assert(!is empty(lp));

element = lp->first;

num = lp->first->item;

if (lp->first == lp->last) {
lp->first = lp->last = NULL;

} else {
lp->first = element->next;

}
lp->num_in_list--;

free(element);

return num;

}

12 / 58

Is there a race condition?

void list append(list *lp, int new item) {
list element *element = malloc(sizeof(list element));

element->item = new item

assert(!is in list(lp, new item));

if (is empty(lp)) {
lp->first = element; lp->last = element;

} else {
lp->last->next = element; lp->last = element;

}
lp->num in list++;

}

13 / 58

Tips for identifying race conditions

find the critical sections
inspect each variable; is it possible for multiple threads to
read/write it at the same time?
constants and memory that all threads only read, do not
cause race conditions

Race conditions

can allow program to end with incorrect behaviour

can cause program to be killed by kernel for incorrect
behaviour

What next?

After identifying the critical sections, how can you prevent race con-
ditions?

How?

Mutual Exclusion can prevent race conditions. How can we achieve
it?

Software Algorithms

Hardware Primitives
14 / 58

A software solution for mutual exclusion: Peterson’s
algorithm

1. #define FALSE 0

2. #define TRUE 1

3. #define N 2 /* number of processes */

4.

5. int turn; /* whose turn is it? */

6. int interested[N]; /* all values initially 0 (FALSE) */

7.

8. void enter_region(int process){ /* process is 0 or 1 */

9. int other=1-process; /* number of the other process */

10.

11. interested[process] = TRUE; /* show that you are interested */

12. turn = process; /* set flag */

13. while (turn == process && interested[other] == TRUE)

14. ; /* be nice, let other go - null statement */

15. }

16.

17. void leave_region(int process){ /* process: who is leaving */

18. interested[process] = FALSE; /* indicate departure from critical region*/

19. }

Edited from: Tannenbaum 4th Ed. Modern Operating Systems

15 / 58

Consider Peterson’s algorithm for mutual exclusion

int volatile total = 0;

void add() { void sub() {
int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
enter_region(thread_id); enter_region(thread_id);

total++; total--;

leave_region(thrad_id); leave_region(thread_id);

} }
} }

Peterson’s solution is not guaranteed to work in modern computers
due to processor and compiler optimizations .

Note: the use of volatile in delcaring total is not enough to provide
mutual exclusion

16 / 58

Alternatives: Enforcing Mutual Exclusion With Locks

int volatile total = 0;

/* lock for total: false => free, true => locked */

bool volatile total lock = false; // false means unlocked

void add() { void sub() {
int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
Acquire(&total lock); Acquire(&total lock);

total++; total--;

Release(&total lock); Release(&total lock);

} }
} }

Acquire/Release must ensure that only one thread at a time can
hold the lock, even if both attempt to Acquire at the same time. If
a thread cannot Acquire the lock immediately, it must wait until the
lock is available.

Locks provide mutual exclusion and are often referred to as a mutex.

17 / 58

Lock Aquire and Release

Acquire(bool *lock) {
while (*lock == true) ; /* spin until lock is free */

lock = true; / grab the lock */

}

Release(book *lock) {
lock = false; / give up the lock */

}

Does this work?

18 / 58

Lock Aquire and Release

Acquire(bool *lock) {
while (*lock == true) ; /* spin until lock is free */

lock = true; / grab the lock */

}

Release(book *lock) {
lock = false; / give up the lock */

}

It does not! Why?

How could you fix it?

19 / 58

Hardware-Specific Synchronization Instructions

provide a way to implement atomic test-and-set for
synchronization primitives like locks

example: the atomic x86 (and x64) xchg instruction:

xchg src,addri

where src is a register, and addr is a memory address. Swaps
the values stored in src and addr.

logical behavior of xchg is an atomic function that behaves
like this:
Xchg(value,addr) {

old = *addr;

*addr = value;

return(old);

}

20 / 58

x86 - Lock Aquire and Release with Xchg

Acquire(bool *lock) {
while (Xchg(true,lock) == true) ;

}

Release(bool *lock) {
lock = false; / give up the lock */

}

If Xchg returns true, the lock was already set, and we must continue
to loop. If Xchg returns false, then the lock was free, and we have
now acquired it.

This construct is known as a spin lock, since a thread busy-waits
(loops) in Acquire until the lock is free.

21 / 58

ARM Synchronization Instructions

exclusive load (LDREX) and store (STREX) operations

LDREX and STREX act as a barrier; must be used together
LDREX loads a value from address addr
STREX will attempt to store a value to address addr
STREX will fail to store value at address addr if addr was
touched between the LDREX and STREX

LDREX and STREX

STREX may fail even if the distance between LDREX and STREX is
small, but should succeed after a few attempts. It is recommended
to place these instructions close together (128bits).

22 / 58

Lock Acquire with LDREX and STREX

ARMTestAndSet(addr, value) {
tmp = LDREX addr // load value

result = STREX value, addr // store new value

if (result == SUCCEED) return tmp

return TRUE

}

Acquire(bool *lock) {
while(ARMTestAndSet(lock, true) == true) {};

}

ARMTestAndSet returns TRUE if the lock is already owned, OR,
if STREX fails, so that we keep trying to acquire the lock. ARMTe-
stAndSet ONLY returns FALSE if the lock is available, AND, if
STREX succeeds.

23 / 58

MIPS Synchronization Instructions

similar to ARM, two instructions are used; ll and sc

ll, load linked, load value at address addr
sc, store conditional, store new value at addr if the value at
addr has not changed since ll

sc

... returns SUCCESS if the value stored at the address has not
changed since ll. The value stored at the address can be any 32bit
value. sc does not check what that value at the address is, it only
checks if it has changed.

24 / 58

Lock Acquire with ll and sc

MIPSTestAndSet(addr, value) {
tmp = ll addr // load value

result = sc addr, value // store conditionally

if (result == SUCCEED) return tmp

return TRUE

}

Acquire(bool *lock) {
while(MIPSTestAndSet(lock, true) == true) {};

}

Initial Lock Value Lock Value at ll Lock Value at sc Lock Value after sc sc Returns Lock State
FALSE FALSE FALSE TRUE SUCCEED own lock
FALSE FALSE TRUE TRUE FAIL keep spinning, no lock
TRUE TRUE TRUE TRUE SUCCEED keep spinning, no lock
TRUE TRUE FALSE FALSE FAIL keep spinning, no lock

25 / 58

Spinlocks in OS/161

A spinlock is a lock that “spins”, repeatedly testing lock
availability in a loop until the lock is available. Threads actively
use the CPU while they “wait” for the lock. In OS/161, spinlocks
are already defined.

struct spinlock {

volatile spinlock_data_t lk_lock;

struct cpu *lk_holder;

};

void spinlock_init(struct spinlock *lk}

void spinlock_acquire(struct spinlock *lk);

void spinlock_release(struct spinlock *lk);

spinlock acquire calls spinlock data testandset in a loop until
the lock is acquired.

26 / 58

OS/161 spinlock acquire

/* return value 0 indicates lock was acquired */

spinlock_data_testandset(volatile spinlock_data_t *sd)

{

spinlock_data_t x,y;

y = 1;

__asm volatile(

/* assembly instructions x = %0, y = %1, sd = %2 */

".set push;" /* save assembler mode */

".set mips32;" /* allow MIPS32 instructions */

".set volatile;" /* avoid unwanted optimization */

"ll %0, 0(%2);" /* x = *sd */

"sc %1, 0(%2);" /* *sd = y; y = success? */

".set pop" /* restore assembler mode */

: "=r" (x), "+r" (y) : "r" (sd)); /* outputs : inputs */

if (y == 0) { return 1; }

return x;

}

C Inline Assembly

“=r” → write only, stored in a register
“+r” → read and write, stored in a register
“r” → input, stored in a register

27 / 58

OS/161 Locks

In addition to spinlocks, OS/161 also has locks.

Like spinlocks, locks are used to enforce mutual exclusion.
struct lock *mylock = lock create("LockName");

lock aquire(mylock);

critical section /* e.g., call to list remove front */

lock release(mylock);

spinlocks spin, locks block:

a thread that calls spinlock acquire spins until the lock can
be acquired
a thread that calls lock acquire blocks until the lock can
be acquired

Locks

... can be used to protect larger critical sections without being a
burden on the CPU. They are a type of mutex. Have owners.

28 / 58

Spinlocks and Locks Additional Notes

spinlocks and locks have an owner; so they cannot be
involuntarily released

a spinlock is owned by a CPU
a lock is by a thread

spinlocks disable interrupts on their CPU

preemption is disabled on that CPU (hence, owned by CPU);
but not others
minimizes spinning
DO NOT use spinlocks to protect large critical sections

29 / 58

Spinlock and Lock API

spinlock void spinlock init(struct spinlock *lk)

void spinlock acquire(struct spinlock *lk)

void spinlock release(struct spinlock *lk)

bool spinlock do i hold(struct spinlock *lk)

void spinlock cleanup(struct spinlock *lk)

lock struct lock *lock create(const char *name)

void lock acquire(struct lock *lk)

void lock release(struct lock *lk)

bool lock do i hold(struct lock *lk)

void lock destroy(struct lock *lk)

30 / 58

Thread Blocking

Sometimes a thread will need to wait for something, e.g.:

wait for a lock to be released by another thread
wait for data from a (relatively) slow device
wait for input from a keyboard
wait for busy device to become idle

When a thread blocks, it stops running:

the scheduler chooses a new thread to run
a context switch from the blocking thread to the new thread
occurs,
the blocking thread is queued in a wait queue (not on the
ready list)

Eventually, a blocked thread is signaled and awakened by
another thread.

31 / 58

Wait Channels in OS/161

wait channels are used to implement thread blocking in
OS/161

void wchan sleep(struct wchan *wc);

blocks calling thread on wait channel wc
causes a context switch, like thread yield

void wchan wakeall(struct wchan *wc);

unblock all threads sleeping on wait channel wc

void wchan wakeone(struct wchan *wc);

unblock one thread sleeping on wait channel wc

void wchan lock(struct wchan *wc);

prevent operations on wait channel wc
more on this later!

there can be many different wait channels, holding threads
that are blocked for different reasons.

wait channels in OS/161 are implemented with queues

32 / 58

Thread States, Revisited

running: currently executing

ready: ready to execute

blocked: waiting for something, not ready execute

ready threads are queued on the ready queue, blocked threads are
queued on wait channels

33 / 58

Semaphores

A semaphore is a synchronization primitive that can be used
to enforce mutual exclusion requirements. It can also be used
to solve other kinds of synchronization problems.

A semaphore is an object that has an integer value, and that
supports two operations:

P: if the semaphore value is greater than 0, decrement the value.
Otherwise, wait until the value is greater than 0 and then
decrement it.

V: increment the value of the semaphore

By definition, the P and V operations of a semaphore are atomic.

34 / 58

Types of Semaphores

binary semaphore: a semaphore with a single resource;
behaves like a lock, but does not keep track of ownership

counting semaphore: a semaphore with an arbitrary number
of resources

barrier semaphore: a semaphore used to force one thread to
wait for others to complete; initial count is typically 0

Differences between a lock and a semaphore

V does not have to follow P

a semaphore can start with 0 resources; calls to V increment
the count

semaphores do not have owners

V does not have to follow P. A semaphore can start with 0 resources.
This forces a thread to wait until resources are produced before con-
tinuing.

35 / 58

Mutual Exclusion Using a Semaphore

volatile int total = 0;

struct semaphore *total sem;

total sem = sem create("total mutex",1); /* initial value is 1 */

void add() { void sub() {
int i; int i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
P(sem); P(sem);

total++; total--;

V(sem); V(sem);

} }
} }

36 / 58

Producer/Consumer Synchronization with Bounded Buffer

suppose we have threads (producers) that add items to a
buffer and threads (consumers) that remove items from the
buffer

suppose we want to ensure that consumers do not consume if
the buffer is empty - instead they must wait until the buffer
has something in it

similarly, suppose the buffer has a finite capacity (N), and we
need to ensure that producers must wait if the buffer is full

this requires synchronization between consumers and
producers

semaphores can provide the necessary synchronization

37 / 58

Bounded Buffer Producer/Consumer with Semaphores

struct semaphore *Items,*Spaces;

Items = sem create("Buffer Items", 0); /* initially = 0 */

Spaces = sem create("Buffer Spaces", N);/* initially = N */

Producer’s Pseudo-code:

P(Spaces);

add item to the buffer

V(Items);

Consumer’s Pseudo-code:

P(Items);

remove item from the buffer

V(Spaces);

There is still a race condition in this code. What is it? How can you
fix it?

38 / 58

Bounded Buffer Producer/Consumer with Semaphores

Discussion:

consumers will wait for items to be produced

producers will wait for spaces to be available

producers and consumers can both access the bounded
buffer at the same time

a third synchronization primitive is required to protect the
buffer
a lock or binary semaphore is sufficient

39 / 58

Semaphore Implementation

P(struct semaphore * sem) {
spinlock acquire(&sem->sem lock);

while (sem->sem count == 0) {
wchan lock(sem->sem wchan);

spinlock release(&sem->sem lock);

wchan sleep(sem->sem wchan);

spinlock acquire(&sem->sem lock);

}
sem->sem count--;

spinlock release(&sem->sem lock);

}

V(struct semaphore * sem) {
spinlock acquire(&sem->sem lock);

sem->count ++;

wchan wakeone(sem->sem wchan);

spinlock release(&sem->sem lock);

Notes:

semaphores do not have owners

the wait channel must be locked before releasing the spinlock.

40 / 58

Incorrect Semaphore Implementation Trace

Suppose spinlock release preceeded wchan lock, count= 0.

Thread 1 Thread 2

calls P() ...
...
count==0

spinlock release

context switch →

The semaphore has no resources, Thread 1 will need to wait for a
resource. But, before Thread 1 sleeps, there is a context switch.

41 / 58

Incorrect Semaphore Implementation Trace

Thread 1 Thread 2

calls P() ...
...
count==0

spinlock release

context switch →
V()

...
count++

wchan wakeone

...

← context switch

Thread 2 produces a resource by calling V. At this point, count= 1.

42 / 58

Incorrect Semaphore Implementation Trace

Thread 1 Thread 2

calls P() ...
...
count==0

spinlock release

context switch →
V()

...
count++

wchan wakeone

...
← context switch

wchan lock

wchan sleep

Thread 1 is now blocked on a semaphore that HAS RESOURCES.

43 / 58

Correct Semaphore Implementation Trace

Suppose wchan lock preceeds spinlock release, count= 0.

Thread 1 Thread 2

calls P() ...
...
count==0

wchan lock

spinlock release

context switch →

The semaphore has no resources, Thread 1 will need to wait for a
resource. But, before Thread 1 sleeps, there is a context switch.

44 / 58

Correct Semaphore Implementation Trace

Thread 1 Thread 2

calls P() ...
...
count==0

wchan lock

spinlock release

context switch →
calls V()

spinlock acquire

count++

wchan wakeone

← context switch

Thread 1 owns the wait channel, so Thread 2 will spin/block inside
of wchan wakeone.

45 / 58

Correct Semaphore Implementation Trace

Thread 1 Thread 2

calls P() ...
...
count==0

wchan lock

spinlock release

context switch →
calls V()

spinlock acquire

count++

wchan wakeone

← context switch
wchan sleep

context switch →

Thread 1 is now sleeping on the semaphores wait channel. Thread
2 will wake.

46 / 58

Correct Semaphore Implementation Trace

Thread 1 Thread 2

calls P() ...
...
count==0

wchan lock

spinlock release

context switch →
calls V()

spinlock acquire

count++

wchan wakeone

← context switch
wchan sleep

context switch →
spinlock release

Thread 2 wakes—and Thread 1 is moved from the wait channel to
the ready queue, Thread 2 finishes execution of V().

47 / 58

Condition Variables

OS/161 supports another common synchronization primitive:
condition variables

each condition variable is intended to work together with a
lock: condition variables are only used from within the
critical section that is protected by the lock

three operations are possible on a condition variable:

wait: This causes the calling thread to block, and it releases
the lock associated with the condition variable. Once the
thread is unblocked it reacquires the lock.
signal: If threads are blocked on the signaled condition
variable, then one of those threads is unblocked.
broadcast: Like signal, but unblocks all threads that are
blocked on the condition variable.

48 / 58

Using Condition Variables

Condition variables get their name because they allow threads
to wait for arbitrary conditions to become true inside of a
critical section.

Normally, each condition variable corresponds to a particular
condition that is of interest to an application. For example, in
the bounded buffer producer/consumer example on the
following slides, the two conditions are:

count > 0 (there are items in the buffer)
count < N (there is free space in the buffer)

when a condition is not true, a thread can wait on the
corresponding condition variable until it becomes true

when a thread detects that a condition is true, it uses signal

or broadcast to notify any threads that may be waiting

Note that signalling (or broadcasting to) a condition variable that
has no waiters has no effect. Signals do not accumulate.

49 / 58

Condition Variable Example

int volatile numberOfGeese = 100;

lock geeseMutex;

int SafeToWalk() {
lock acquire(geeseMutex);

if (numberOfGeese > 0) {
... wait? ...

}
}

Thread must wait for numberOfGeese > 0 before continuu-
ing. BUT thread owns geeseMutex, which protects access to
numberOfGeese.

50 / 58

Condition Variable Example - Solution 1

int volatile numberOfGeese = 100;

lock geeseMutex;

int SafeToWalk() {
lock acquire(geeseMutex);

while (numberOfGeese > 0) {
lock release(geeseMutex);

lock acquire(geeseMutex);

}
}

Releasing and re-acquiring geeseMutex provides an opportunity for
a context switch to occur and another thread might then acquire
the lock and modify numberOfGeese. BUT the thread should not
be waiting for the lock, it should be waiting for the condition to be
true.

51 / 58

Condition Variable Example - Solution 2

int volatile numberOfGeese = 100;

lock geeseMutex;

cv zeroGeese;

int SafeToWalk() {
lock acquire(geeseMutex);

while (numberOfGeese > 0) {
cv wait(zeroGeese, geeseMutex);

}
}

Use a condition variable. cv wait will handle releasing and re-
acquring the lock passed in (geeseMutex, in this case), it also
puts the calling thread onto the conditions wait channel to block.
cv signal and cv broadcast are used to wake threads waiting on
the cv.

52 / 58

Waiting on Condition Variables

when a blocked thread is unblocked (by signal or
broadcast), it reacquires the lock before returning from the
wait call

a thread is in the critical section when it calls wait, and it will
be in the critical section when wait returns. However, in
between the call and the return, while the caller is blocked,
the caller is out of the critical section, and other threads may
enter.

This describes Mesa-style condition variables, which are used in
OS/161. There are alternative condition variable semantics (Hoare
semantics), which differ from the semantics described here.

53 / 58

Bounded Buffer Producer Using Locks and Condition
Variables

int volatile count = 0; /* must initially be 0 */

struct lock *mutex; /* for mutual exclusion */

struct cv *notfull, *notempty; /* condition variables */

/* Initialization Note: the lock and cv’s must be created

* using lock create() and cv create() before Produce()

* and Consume() are called */

Produce(itemType item) {
lock acquire(mutex);

while (count == N) {
cv wait(notfull, mutex); /* wait until buffer is not full */

}
add item to buffer (call list append())

count = count + 1;

cv signal(notempty, mutex); /* signal that buffer is not empty */

lock release(mutex);

}

54 / 58

Bounded Buffer Consumer Using Locks and Condition
Variables

itemType Consume() {
lock acquire(mutex);

while (count == 0) {
cv wait(notempty, mutex); /* wait until buffer is not emtpy */

}
remove item from buffer (call list remove front())

count = count - 1;

cv signal(notfull, mutex); /* signal that buffer is not full */

lock release(mutex);

return(item);

}

Both Produce() and Consume() call cv wait() inside of a while

loop. Why?

55 / 58

Deadlocks

Consider the following pseudocode:

lock lockA, lockB;

int FuncA() { int FuncB() {
lock acquire(lockA) lock acquire(lockB)

lock acquire(lockB) lock acquire(lockA)

... ...

lock release(lockA) lock release(lockB)

lock release(lockB) lock release(lockA)

}

What if:

Thread 1 executes lock acquire(lockA)

Thread 2 executes lock acquire(lockB)

Thread 1 executes lock acquire(lockB)

Thread 2 executes lock acquire(lockA)

56 / 58

Deadlocks
Consider the following pseudocode:

lock lockA, lockB;

int FuncA() { int FuncB() {
lock acquire(lockA) lock acquire(lockB)

lock acquire(lockB) lock acquire(lockA)

... ...

lock release(lockA) lock release(lockB)

lock release(lockB) lock release(lockA)

}

What if:

Thread 1 executes lock acquire(lockA)

Thread 2 executes lock acquire(lockB)

Thread 1 executes lock acquire(lockB)

Thread 2 executes lock acquire(lockA)

Thread 1 and 2 are deadlocked. Neither thread can make progress.
Waiting will not resolve the deadlock, the threads a permanently
stuck.

57 / 58

Two Techniques for Deadlock Prevention

No Hold and Wait: prevent a thread from requesting
resources if it currently has resources allocated to it. A thread
may hold several resources, but to do so it must make a single
request for all of them.

Resource Ordering: Order (e.g., number) the resource types,
and require that each thread acquire resources in increasing
resource type order. That is, a thread may make no requests
for resources of type less than or equal to i if it is holding
resources of type i .

58 / 58

